L(s) = 1 | + 2·2-s + 3·4-s + 7-s + 4·8-s − 6·9-s + 2·14-s + 5·16-s − 12·18-s − 6·25-s + 3·28-s − 12·29-s + 6·32-s − 18·36-s − 12·37-s − 24·43-s + 49-s − 12·50-s − 4·53-s + 4·56-s − 24·58-s − 6·63-s + 7·64-s + 24·67-s − 24·72-s − 24·74-s − 16·79-s + 27·81-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 0.377·7-s + 1.41·8-s − 2·9-s + 0.534·14-s + 5/4·16-s − 2.82·18-s − 6/5·25-s + 0.566·28-s − 2.22·29-s + 1.06·32-s − 3·36-s − 1.97·37-s − 3.65·43-s + 1/7·49-s − 1.69·50-s − 0.549·53-s + 0.534·56-s − 3.15·58-s − 0.755·63-s + 7/8·64-s + 2.93·67-s − 2.82·72-s − 2.78·74-s − 1.80·79-s + 3·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396508 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396508 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.224383160473151438327737126984, −8.141215318250912713100120450381, −7.31408639973055649098152315553, −6.94219495068550059915873452189, −6.42857794006623898982743840849, −5.70286626752820956259075840901, −5.68518485773994087792082977671, −5.11332775341498038219899119581, −4.74254867216183849876291306196, −3.82658470314743989463200974897, −3.40674497567057131140915818833, −3.15634367282858574822998301134, −2.04650857588819893440526220286, −1.91012210733034651779284644815, 0,
1.91012210733034651779284644815, 2.04650857588819893440526220286, 3.15634367282858574822998301134, 3.40674497567057131140915818833, 3.82658470314743989463200974897, 4.74254867216183849876291306196, 5.11332775341498038219899119581, 5.68518485773994087792082977671, 5.70286626752820956259075840901, 6.42857794006623898982743840849, 6.94219495068550059915873452189, 7.31408639973055649098152315553, 8.141215318250912713100120450381, 8.224383160473151438327737126984