L(s) = 1 | − 3-s − 6·7-s − 2·9-s − 4·19-s + 6·21-s − 10·25-s + 5·27-s − 8·31-s + 2·37-s + 8·43-s + 13·49-s + 4·57-s − 8·61-s + 12·63-s + 24·67-s − 26·73-s + 10·75-s − 20·79-s + 81-s + 8·93-s − 24·97-s − 16·103-s − 28·109-s − 2·111-s − 13·121-s + 127-s − 8·129-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 2.26·7-s − 2/3·9-s − 0.917·19-s + 1.30·21-s − 2·25-s + 0.962·27-s − 1.43·31-s + 0.328·37-s + 1.21·43-s + 13/7·49-s + 0.529·57-s − 1.02·61-s + 1.51·63-s + 2.93·67-s − 3.04·73-s + 1.15·75-s − 2.25·79-s + 1/9·81-s + 0.829·93-s − 2.43·97-s − 1.57·103-s − 2.68·109-s − 0.189·111-s − 1.18·121-s + 0.0887·127-s − 0.704·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 788544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 788544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.65286120224110903388505491453, −7.34822351800845502523348597298, −6.72433556984559570880095854341, −6.40256795051194833967277103826, −6.08449220356234607481996960226, −5.54270171583374531541087657986, −5.43110991062316119422108197791, −4.38932651849542855280266113316, −3.93279504709150990560375020684, −3.59781441472728197557363900163, −2.76426174907496236443941498069, −2.58862548114280755949345221322, −1.50974967736814861270341338685, 0, 0,
1.50974967736814861270341338685, 2.58862548114280755949345221322, 2.76426174907496236443941498069, 3.59781441472728197557363900163, 3.93279504709150990560375020684, 4.38932651849542855280266113316, 5.43110991062316119422108197791, 5.54270171583374531541087657986, 6.08449220356234607481996960226, 6.40256795051194833967277103826, 6.72433556984559570880095854341, 7.34822351800845502523348597298, 7.65286120224110903388505491453