Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 12 x + 97 x^{2} )^{2}$ |
$1 + 24 x + 338 x^{2} + 2328 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.708512424851$, $\pm0.708512424851$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $69$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $12100$ | $89491600$ | $829757028100$ | $7840323279360000$ | $73741988355271802500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $122$ | $9510$ | $909146$ | $88561918$ | $8587290842$ | $832969432230$ | $80798320143866$ | $7837433415939838$ | $760231057336232762$ | $73742412722621216550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 69 curves (of which all are hyperelliptic):
- $y^2=2 x^6+39 x^5+14 x^4+9 x^3+14 x^2+39 x+2$
- $y^2=39 x^6+63 x^5+35 x^4+80 x^3+70 x^2+48 x+3$
- $y^2=51 x^6+86 x^5+53 x^4+81 x^3+53 x^2+50 x+9$
- $y^2=3 x^6+68 x^5+86 x^4+27 x^3+81 x^2+41 x+18$
- $y^2=48 x^6+56 x^5+70 x^4+57 x^3+62 x^2+81 x+36$
- $y^2=88 x^6+30 x^4+94 x^3+67 x^2+9$
- $y^2=17 x^6+92 x^5+32 x^4+77 x^3+39 x^2+56$
- $y^2=15 x^6+9 x^5+68 x^4+70 x^3+67 x^2+50 x+26$
- $y^2=89 x^6+44 x^5+27 x^4+74 x^3+90 x^2+3 x+61$
- $y^2=42 x^6+69 x^5+29 x^4+29 x^3+56 x^2+54 x+11$
- $y^2=42 x^6+14 x^5+20 x^4+19 x^3+26 x^2+85 x+10$
- $y^2=9 x^6+23 x^5+46 x^4+95 x^3+46 x^2+23 x+9$
- $y^2=51 x^6+12 x^5+26 x^4+74 x^3+52 x^2+48 x+20$
- $y^2=19 x^6+78 x^5+44 x^4+9 x^3+39 x^2+53 x+3$
- $y^2=28 x^6+52 x^5+58 x^4+71 x^3+15 x^2+45 x+63$
- $y^2=31 x^6+47 x^5+75 x^4+82 x^3+81 x^2+93 x+66$
- $y^2=12 x^6+28 x^5+72 x^4+54 x^3+51 x^2+47 x+87$
- $y^2=20 x^6+9 x^5+28 x^4+12 x^3+28 x^2+9 x+20$
- $y^2=50 x^6+7 x^5+76 x^4+33 x^3+92 x^2+74 x+15$
- $y^2=85 x^6+78 x^5+27 x^4+16 x^3+27 x^2+78 x+85$
- and 49 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.m 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-61}) \)$)$ |
Base change
This is a primitive isogeny class.