Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 83 x^{2} )( 1 + x + 83 x^{2} )$ |
$1 + 165 x^{2} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.482521693698$, $\pm0.517478306302$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $24$ |
Isomorphism classes: | 36 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7055$ | $49773025$ | $326941455440$ | $2251016163765625$ | $15516041193925825775$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $7220$ | $571788$ | $47431428$ | $3939040644$ | $326942537510$ | $27136050989628$ | $2252292060328708$ | $186940255267540404$ | $15516041200645798100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=53 x^6+24 x^5+82 x^4+43 x^3+19 x^2+32 x+13$
- $y^2=23 x^6+48 x^5+81 x^4+3 x^3+38 x^2+64 x+26$
- $y^2=8 x^6+2 x^5+48 x^4+40 x^3+7 x^2+20 x+67$
- $y^2=16 x^6+4 x^5+13 x^4+80 x^3+14 x^2+40 x+51$
- $y^2=24 x^6+35 x^5+20 x^4+62 x^3+66 x^2+45 x+71$
- $y^2=48 x^6+70 x^5+40 x^4+41 x^3+49 x^2+7 x+59$
- $y^2=3 x^6+5 x^5+65 x^4+54 x^3+77 x^2+19 x+37$
- $y^2=6 x^6+10 x^5+47 x^4+25 x^3+71 x^2+38 x+74$
- $y^2=82 x^6+27 x^5+82 x^4+8 x^3+50 x^2+21 x+2$
- $y^2=81 x^6+54 x^5+81 x^4+16 x^3+17 x^2+42 x+4$
- $y^2=24 x^6+3 x^5+69 x^4+38 x^3+69 x^2+3 x+24$
- $y^2=48 x^6+6 x^5+55 x^4+76 x^3+55 x^2+6 x+48$
- $y^2=79 x^6+54 x^5+51 x^4+65 x^3+38 x^2+34 x+76$
- $y^2=75 x^6+25 x^5+19 x^4+47 x^3+76 x^2+68 x+69$
- $y^2=32 x^6+11 x^5+9 x^4+13 x^3+75 x^2+63 x+71$
- $y^2=64 x^6+22 x^5+18 x^4+26 x^3+67 x^2+43 x+59$
- $y^2=76 x^6+2 x^5+59 x^4+56 x^3+4 x^2+60 x+35$
- $y^2=69 x^6+4 x^5+35 x^4+29 x^3+8 x^2+37 x+70$
- $y^2=21 x^6+46 x^5+47 x^4+65 x^3+18 x^2+53 x+70$
- $y^2=42 x^6+9 x^5+11 x^4+47 x^3+36 x^2+23 x+57$
- $y^2=73 x^6+29 x^5+3 x^4+50 x^3+10 x^2+64 x+60$
- $y^2=63 x^6+58 x^5+6 x^4+17 x^3+20 x^2+45 x+37$
- $y^2=43 x^6+73 x^5+29 x^4+56 x^3+70 x^2+35 x+46$
- $y^2=3 x^6+63 x^5+58 x^4+29 x^3+57 x^2+70 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.ab $\times$ 1.83.b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.gj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-331}) \)$)$ |
Base change
This is a primitive isogeny class.