L(s) = 1 | + 3·4-s + 2·5-s − 2·9-s − 11-s + 5·16-s + 6·20-s − 25-s − 20·31-s − 6·36-s − 3·44-s − 4·45-s − 49-s − 2·55-s + 4·59-s + 3·64-s − 24·71-s + 10·80-s − 5·81-s + 12·89-s + 2·99-s − 3·100-s + 121-s − 60·124-s − 12·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 3/2·4-s + 0.894·5-s − 2/3·9-s − 0.301·11-s + 5/4·16-s + 1.34·20-s − 1/5·25-s − 3.59·31-s − 36-s − 0.452·44-s − 0.596·45-s − 1/7·49-s − 0.269·55-s + 0.520·59-s + 3/8·64-s − 2.84·71-s + 1.11·80-s − 5/9·81-s + 1.27·89-s + 0.201·99-s − 0.299·100-s + 1/11·121-s − 5.38·124-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1630475 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1630475 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.46127747363326771157161669823, −7.24266733214459675987556450307, −6.88644111010535416927201052141, −6.16131703698560659490677273092, −6.02967715717589461724363247324, −5.58013881532135247113220009754, −5.29120274672565051648185432644, −4.64426426210579357808086462080, −3.83193092345248498267473755969, −3.44033370812212446843781041764, −2.84156206421301966506253420212, −2.35165194264530572320119772609, −1.87025015711116528356850388928, −1.44183540096122748448332102848, 0,
1.44183540096122748448332102848, 1.87025015711116528356850388928, 2.35165194264530572320119772609, 2.84156206421301966506253420212, 3.44033370812212446843781041764, 3.83193092345248498267473755969, 4.64426426210579357808086462080, 5.29120274672565051648185432644, 5.58013881532135247113220009754, 6.02967715717589461724363247324, 6.16131703698560659490677273092, 6.88644111010535416927201052141, 7.24266733214459675987556450307, 7.46127747363326771157161669823