Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 82 x^{2} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.155084565757$, $\pm0.844915434243$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{57})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $234$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5248$ | $27541504$ | $151334985856$ | $806683601534976$ | $4297625829044080768$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $5166$ | $389018$ | $28406110$ | $2073071594$ | $151335745422$ | $11047398519098$ | $806460174534334$ | $58871586708267914$ | $4297625828384603886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):
- $y^2=8 x^6+28 x^5+60 x^4+63 x^3+8 x^2+5 x+19$
- $y^2=40 x^6+67 x^5+8 x^4+23 x^3+40 x^2+25 x+22$
- $y^2=10 x^6+3 x^5+5 x^4+18 x^3+x^2+41 x+3$
- $y^2=19 x^6+12 x^5+3 x^4+41 x^3+27 x^2+44 x+13$
- $y^2=11 x^6+24 x^5+31 x^4+6 x^3+69 x^2+26 x+44$
- $y^2=55 x^6+47 x^5+9 x^4+30 x^3+53 x^2+57 x+1$
- $y^2=40 x^6+42 x^5+39 x^4+47 x^3+62 x^2+36 x+48$
- $y^2=54 x^6+64 x^5+49 x^4+16 x^3+18 x^2+34 x+21$
- $y^2=12 x^6+25 x^5+37 x^4+54 x^3+14 x^2+36 x+40$
- $y^2=28 x^5+35 x^4+10 x^3+8 x^2+18 x+47$
- $y^2=31 x^6+47 x^5+40 x^4+27 x^3+41 x^2+33 x+18$
- $y^2=46 x^6+16 x^5+57 x^4+38 x^3+36 x^2+19$
- $y^2=11 x^6+7 x^5+66 x^4+44 x^3+34 x^2+22$
- $y^2=37 x^6+17 x^5+15 x^4+12 x^3+7 x^2+67 x+20$
- $y^2=39 x^6+12 x^5+2 x^4+60 x^3+35 x^2+43 x+27$
- $y^2=32 x^6+27 x^5+12 x^4+19 x^3+62 x^2+9 x+47$
- $y^2=11 x^6+34 x^5+54 x^4+6 x^3+66 x^2+33 x+60$
- $y^2=55 x^6+24 x^5+51 x^4+30 x^3+38 x^2+19 x+8$
- $y^2=70 x^6+37 x^5+50 x^4+22 x^3+20 x^2+37 x+68$
- $y^2=58 x^6+39 x^5+31 x^4+37 x^3+27 x^2+39 x+48$
- and 214 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{57})\). |
| The base change of $A$ to $\F_{73^{2}}$ is 1.5329.ade 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
Base change
This is a primitive isogeny class.