Properties

Label 2.73.a_ade
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 - 82 x^{2} + 5329 x^{4}$
Frobenius angles:  $\pm0.155084565757$, $\pm0.844915434243$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{57})\)
Galois group:  $C_2^2$
Jacobians:  $234$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5248$ $27541504$ $151334985856$ $806683601534976$ $4297625829044080768$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $74$ $5166$ $389018$ $28406110$ $2073071594$ $151335745422$ $11047398519098$ $806460174534334$ $58871586708267914$ $4297625828384603886$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73^{2}}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{57})\).
Endomorphism algebra over $\overline{\F}_{73}$
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.ade 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.aq_ic$4$(not in LMFDB)
2.73.a_de$4$(not in LMFDB)
2.73.q_ic$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.aq_ic$4$(not in LMFDB)
2.73.a_de$4$(not in LMFDB)
2.73.q_ic$4$(not in LMFDB)
2.73.ai_aj$12$(not in LMFDB)
2.73.i_aj$12$(not in LMFDB)