Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 59 x^{2} )^{2}$ |
| $1 - 4 x + 122 x^{2} - 236 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.458441617268$, $\pm0.458441617268$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $20$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 29$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3364$ | $12931216$ | $42323187076$ | $146684265923584$ | $511070311443345124$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $3710$ | $206072$ | $12105294$ | $714859336$ | $42181115726$ | $2488656481864$ | $146830413255454$ | $8662995475131608$ | $511116754050177950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=32 x^5+34 x^4+11 x^2+9 x+56$
- $y^2=x^6+50 x^5+25 x^4+27 x^3+21 x^2+40 x+43$
- $y^2=19 x^6+7 x^5+21 x^4+6 x^3+34 x^2+22 x+49$
- $y^2=11 x^6+47 x^5+43 x^4+49 x^3+43 x^2+47 x+11$
- $y^2=27 x^6+19 x^5+4 x^4+55 x^3+24 x^2+58 x+13$
- $y^2=17 x^6+15 x^5+42 x^4+50 x^3+17 x^2+12 x+8$
- $y^2=56 x^6+50 x^5+26 x^4+26 x^3+16 x^2+15 x+37$
- $y^2=53 x^6+27 x^5+31 x^4+54 x^3+30 x^2+3 x+26$
- $y^2=50 x^6+47 x^5+45 x^4+20 x^3+27 x^2+11 x+20$
- $y^2=8 x^6+38 x^4+21 x^3+32 x^2+46 x+49$
- $y^2=4 x^5+12 x^4+27 x^3+10 x^2+14 x+20$
- $y^2=56 x^6+43 x^5+22 x^3+17 x^2+58 x+30$
- $y^2=21 x^6+26 x^5+17 x^4+31 x^3+31 x^2+36 x+4$
- $y^2=29 x^6+57 x^5+50 x^4+41 x^3+41 x^2+27 x+35$
- $y^2=9 x^6+33 x^5+57 x^4+2 x^3+55 x^2+54 x+34$
- $y^2=32 x^6+25 x^4+25 x^2+32$
- $y^2=15 x^6+44 x^5+43 x^4+21 x^3+15 x^2+58 x+24$
- $y^2=47 x^6+23 x^5+39 x^4+6 x^3+10 x^2+50 x+24$
- $y^2=55 x^6+17 x^5+52 x^4+17 x^3+47 x^2+55 x+10$
- $y^2=25 x^6+37 x^5+30 x^4+58 x^3+15 x^2+57 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$ |
Base change
This is a primitive isogeny class.