Properties

Label 2.59.ae_es
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 59 x^{2} )^{2}$
  $1 - 4 x + 122 x^{2} - 236 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.458441617268$, $\pm0.458441617268$
Angle rank:  $1$ (numerical)
Jacobians:  $20$
Cyclic group of points:    no
Non-cyclic primes:   $2, 29$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3364$ $12931216$ $42323187076$ $146684265923584$ $511070311443345124$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $3710$ $206072$ $12105294$ $714859336$ $42181115726$ $2488656481864$ $146830413255454$ $8662995475131608$ $511116754050177950$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_ek$2$(not in LMFDB)
2.59.e_es$2$(not in LMFDB)
2.59.c_acd$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_ek$2$(not in LMFDB)
2.59.e_es$2$(not in LMFDB)
2.59.c_acd$3$(not in LMFDB)
2.59.a_aek$4$(not in LMFDB)
2.59.ac_acd$6$(not in LMFDB)