| L(s) = 1 | − 2-s − 2·3-s + 4-s + 2·5-s + 2·6-s + 8-s + 2·9-s − 2·10-s − 5·11-s − 2·12-s − 5·13-s − 4·15-s − 3·16-s + 6·17-s − 2·18-s − 4·19-s + 2·20-s + 5·22-s + 2·23-s − 2·24-s − 2·25-s + 5·26-s − 6·27-s + 3·29-s + 4·30-s + 31-s + 5·32-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.894·5-s + 0.816·6-s + 0.353·8-s + 2/3·9-s − 0.632·10-s − 1.50·11-s − 0.577·12-s − 1.38·13-s − 1.03·15-s − 3/4·16-s + 1.45·17-s − 0.471·18-s − 0.917·19-s + 0.447·20-s + 1.06·22-s + 0.417·23-s − 0.408·24-s − 2/5·25-s + 0.980·26-s − 1.15·27-s + 0.557·29-s + 0.730·30-s + 0.179·31-s + 0.883·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1142 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1142 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3374268099\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3374268099\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.4481130748, −19.1499185592, −18.6184562244, −17.9660224271, −17.3897538631, −17.1295264330, −16.7509930181, −15.9723797342, −15.5568133604, −14.7190106662, −14.0100027502, −13.2886938320, −12.6891923372, −12.0899940840, −11.3705297274, −10.5822289444, −10.1797285795, −9.81415606453, −8.76426803796, −7.56213759903, −7.39937804289, −6.07712202493, −5.51875130209, −4.66444335517, −2.39675107461,
2.39675107461, 4.66444335517, 5.51875130209, 6.07712202493, 7.39937804289, 7.56213759903, 8.76426803796, 9.81415606453, 10.1797285795, 10.5822289444, 11.3705297274, 12.0899940840, 12.6891923372, 13.2886938320, 14.0100027502, 14.7190106662, 15.5568133604, 15.9723797342, 16.7509930181, 17.1295264330, 17.3897538631, 17.9660224271, 18.6184562244, 19.1499185592, 19.4481130748