Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 41 x^{2} )( 1 + 8 x + 41 x^{2} )$ |
| $1 + 2 x + 34 x^{2} + 82 x^{3} + 1681 x^{4}$ | |
| Frobenius angles: | $\pm0.344786929280$, $\pm0.714776712523$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $170$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1800$ | $2937600$ | $4753441800$ | $7997040230400$ | $13420472477445000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $1746$ | $68972$ | $2830046$ | $115837324$ | $4749884658$ | $194754919564$ | $7984925750206$ | $327381961138412$ | $13422659555121426$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 170 curves (of which all are hyperelliptic):
- $y^2=34 x^6+16 x^4+28 x^3+6 x^2+34 x+11$
- $y^2=21 x^6+20 x^5+23 x^4+10 x^3+23 x^2+6 x+10$
- $y^2=20 x^6+34 x^5+16 x^4+x^3+21 x^2+25 x+4$
- $y^2=5 x^6+27 x^5+17 x^4+9 x^3+18 x^2+17 x+27$
- $y^2=11 x^6+5 x^5+10 x^4+39 x^3+2 x^2+6 x+36$
- $y^2=30 x^6+13 x^5+6 x^4+16 x^3+6 x^2+13 x+30$
- $y^2=25 x^5+40 x^4+2 x^3+35 x+40$
- $y^2=2 x^6+38 x^5+33 x^4+19 x^3+21 x^2+16 x+23$
- $y^2=17 x^6+40 x^5+37 x^4+5 x^3+37 x^2+40 x+17$
- $y^2=31 x^5+20 x^4+33 x^3+27 x^2+39 x+2$
- $y^2=36 x^6+39 x^5+19 x^4+27 x^3+19 x^2+2 x+3$
- $y^2=33 x^6+34 x^5+31 x^4+28 x^3+24 x^2+18 x+21$
- $y^2=12 x^6+28 x^5+36 x^4+26 x^3+32 x^2+12 x+29$
- $y^2=14 x^5+33 x^4+32 x^3+30 x^2+6 x+2$
- $y^2=16 x^6+31 x^5+23 x^4+14 x^3+14 x^2+28 x$
- $y^2=3 x^6+2 x^5+13 x^4+13 x^3+23 x^2+24 x+7$
- $y^2=30 x^6+32 x^5+6 x^4+8 x^3+35 x^2+13 x+9$
- $y^2=27 x^6+10 x^5+37 x^4+29 x^3+13 x^2+8 x+38$
- $y^2=31 x^6+21 x^5+5 x^4+15 x^3+2 x^2+10 x+39$
- $y^2=23 x^6+32 x^4+4 x^3+35 x^2+10 x+8$
- and 150 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The isogeny class factors as 1.41.ag $\times$ 1.41.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.