Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 3 x + 8 x^{2} - 87 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.199242713983$, $\pm0.678510535294$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.36167868.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
Isomorphism classes: | 36 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $760$ | $714400$ | $589574560$ | $501946012800$ | $420954604427800$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $27$ | $849$ | $24174$ | $709681$ | $20523207$ | $594815622$ | $17250147123$ | $500246318401$ | $14507132715846$ | $420707224313049$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=14 x^6+23 x^5+4 x^3+6 x^2+18 x+12$
- $y^2=21 x^6+15 x^5+22 x^4+11 x^3+24 x^2+28 x+11$
- $y^2=7 x^6+23 x^5+7 x^4+x^3+14 x^2+2 x+20$
- $y^2=15 x^6+17 x^5+28 x^4+6 x^3+5 x^2+8 x+23$
- $y^2=28 x^6+19 x^5+3 x^4+14 x^3+9 x^2+10 x+18$
- $y^2=10 x^6+28 x^5+17 x^4+9 x^3+11 x^2+17 x+11$
- $y^2=21 x^6+5 x^5+2 x^3+7 x^2+27 x+22$
- $y^2=7 x^6+21 x^5+26 x^4+24 x^3+28 x^2+25 x+20$
- $y^2=26 x^6+16 x^5+27 x^4+27 x^3+10 x^2+7 x+17$
- $y^2=19 x^6+13 x^5+15 x^4+17 x^3+7 x^2+15 x+10$
- $y^2=15 x^5+4 x^3+11 x+11$
- $y^2=13 x^6+7 x^5+11 x^4+9 x^3+28 x^2+25 x+5$
- $y^2=21 x^6+22 x^5+20 x^4+26 x^3+22 x^2+11 x+19$
- $y^2=23 x^6+18 x^5+15 x^4+8 x^2+20 x+26$
- $y^2=24 x^6+12 x^5+7 x^4+18 x^2+13 x+15$
- $y^2=16 x^6+14 x^5+7 x^4+11 x^3+18 x^2+15 x+14$
- $y^2=28 x^6+20 x^5+6 x^4+25 x^3+15 x+5$
- $y^2=10 x^6+9 x^5+25 x^4+4 x^3+15 x^2+26 x+6$
- $y^2=16 x^6+7 x^5+26 x^4+22 x^3+3 x^2+9 x+10$
- $y^2=15 x^6+16 x^5+4 x^4+21 x^3+10 x^2+13 x+23$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.36167868.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.d_i | $2$ | (not in LMFDB) |