Properties

Label 2.29.ad_i
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $1 - 3 x + 8 x^{2} - 87 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.199242713983$, $\pm0.678510535294$
Angle rank:  $2$ (numerical)
Number field:  4.0.36167868.1
Galois group:  $D_{4}$
Jacobians:  $36$
Isomorphism classes:  36

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $760$ $714400$ $589574560$ $501946012800$ $420954604427800$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $27$ $849$ $24174$ $709681$ $20523207$ $594815622$ $17250147123$ $500246318401$ $14507132715846$ $420707224313049$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The endomorphism algebra of this simple isogeny class is 4.0.36167868.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.d_i$2$(not in LMFDB)