Properties

Label 2.3.c_c
Base field $\F_{3}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
L-polynomial:  $1 + 2 x + 2 x^{2} + 6 x^{3} + 9 x^{4}$
Frobenius angles:  $\pm0.383860236401$, $\pm0.883860236401$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{5})\)
Galois group:  $C_2^2$
Jacobians:  $2$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $20$ $80$ $1220$ $6400$ $50500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $10$ $42$ $78$ $206$ $730$ $2162$ $6878$ $19446$ $59050$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{4}}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{5})\).
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{4}}$ is 1.81.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.3.ac_c$2$2.9.a_ac
2.3.a_ae$8$(not in LMFDB)
2.3.a_e$8$(not in LMFDB)