Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 61 x^{2} )( 1 + 13 x + 61 x^{2} )$ |
| $1 - x - 60 x^{2} - 61 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.146275019398$, $\pm0.812941686065$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $111$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3600$ | $13406400$ | $51438240000$ | $191807027193600$ | $713327454196290000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $61$ | $3601$ | $226618$ | $13853041$ | $844578001$ | $51521216038$ | $3142744373221$ | $191707337131201$ | $11694146328640258$ | $713342910308616601$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 111 curves (of which all are hyperelliptic):
- $y^2=53 x^6+42 x^5+37 x^4+20 x^3+10 x^2+23 x+46$
- $y^2=12 x^6+22 x^5+13 x^4+24 x^3+24 x^2+18 x+30$
- $y^2=x^6+2 x^3+47$
- $y^2=50 x^6+12 x^5+22 x^4+9 x^3+7 x^2+48 x+26$
- $y^2=31 x^6+25 x^5+44 x^4+31 x^3+3 x^2+55 x+9$
- $y^2=11 x^6+10 x^5+36 x^4+18 x^3+11 x^2+10 x+16$
- $y^2=33 x^6+46 x^5+56 x^4+39 x^3+59 x^2+14 x+58$
- $y^2=36 x^6+2 x^5+15 x^4+39 x^3+39 x^2+6 x+33$
- $y^2=30 x^6+15 x^5+16 x^4+23 x^3+x^2+11 x+21$
- $y^2=15 x^6+39 x^4+37 x^3+14 x^2+49 x+16$
- $y^2=23 x^6+40 x^5+23 x^4+28 x^3+43 x^2+55 x+34$
- $y^2=4 x^6+40 x^5+17 x^4+38 x^3+23 x^2+28 x+46$
- $y^2=41 x^6+59 x^5+8 x^4+59 x^3+42 x^2+19 x+47$
- $y^2=29 x^6+18 x^5+45 x^4+21 x^3+2 x^2+15 x+37$
- $y^2=13 x^6+54 x^5+17 x^4+21 x^3+29 x^2+5 x+4$
- $y^2=57 x^6+33 x^5+37 x^4+43 x^3+52 x^2+2$
- $y^2=36 x^6+58 x^5+28 x^4+46 x^3+30 x^2+51 x+41$
- $y^2=20 x^6+x^5+27 x^4+12 x^3+20 x^2+19 x+41$
- $y^2=3 x^6+33 x^5+46 x^4+8 x^3+54 x^2+55 x+21$
- $y^2=11 x^6+17 x^5+51 x^4+26 x^3+17 x^2+27 x+6$
- and 91 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ao $\times$ 1.61.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{61^{3}}$ is 1.226981.aha 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.