Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x + 12 x^{2} + 37 x^{3} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.292195183460$, $\pm0.742232450194$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.28086453.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $112$ |
| Isomorphism classes: | 112 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1420$ | $1908480$ | $2569535440$ | $3522023500800$ | $4808014552227100$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $39$ | $1393$ | $50730$ | $1879249$ | $69335739$ | $2565639286$ | $94931770623$ | $3512473945921$ | $129961761056610$ | $4808584540465993$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=25 x^6+5 x^5+29 x^4+25 x^3+10 x^2+28 x+8$
- $y^2=22 x^6+20 x^5+33 x^4+7 x^3+25 x^2+x+4$
- $y^2=13 x^6+25 x^5+26 x^4+28 x^3+10 x^2+16 x+1$
- $y^2=28 x^6+15 x^5+8 x^4+32 x^3+7 x^2+22 x+23$
- $y^2=26 x^6+28 x^5+35 x^4+30 x^3+24 x^2+15 x+22$
- $y^2=12 x^6+x^5+9 x^4+29 x^3+32 x^2+36 x+30$
- $y^2=35 x^6+29 x^5+29 x^4+28 x^3+9 x^2+25 x+4$
- $y^2=25 x^6+17 x^5+13 x^2+31 x+8$
- $y^2=32 x^6+3 x^5+2 x^4+11 x^3+26 x^2+10 x+6$
- $y^2=33 x^6+4 x^5+24 x^4+26 x^3+20 x^2+26 x+11$
- $y^2=7 x^6+31 x^5+11 x^4+21 x^3+9 x^2+8 x+14$
- $y^2=3 x^6+25 x^5+14 x^4+9 x^3+7 x^2+8 x+7$
- $y^2=18 x^6+18 x^5+7 x^4+23 x^3+5 x^2+31 x+1$
- $y^2=x^6+36 x^5+15 x^4+23 x^3+30 x^2+19 x+8$
- $y^2=13 x^6+27 x^4+11 x^3+13 x^2+28 x+19$
- $y^2=28 x^6+31 x^5+32 x^4+10 x^2+24 x+14$
- $y^2=27 x^6+33 x^5+8 x^4+15 x^2+2 x+10$
- $y^2=31 x^5+11 x^4+18 x^3+24 x^2+3 x+19$
- $y^2=19 x^6+9 x^5+28 x^4+8 x^3+31 x^2+31 x+33$
- $y^2=32 x^6+10 x^5+17 x^4+5 x^3+30 x^2+20 x+35$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is 4.0.28086453.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.37.ab_m | $2$ | (not in LMFDB) |