Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 89 x^{2} )( 1 + 10 x + 89 x^{2} )$ |
| $1 + 6 x + 138 x^{2} + 534 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.432002453901$, $\pm0.677807684489$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $280$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8600$ | $64672000$ | $496511514200$ | $3936548423680000$ | $31181273689921703000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $8162$ | $704304$ | $62741598$ | $5583979536$ | $496980313922$ | $44231357405184$ | $3936588853250878$ | $350356401470598336$ | $31181719932544749602$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 280 curves (of which all are hyperelliptic):
- $y^2=16 x^6+67 x^5+51 x^4+38 x^3+64 x^2+49 x+85$
- $y^2=59 x^6+86 x^5+68 x^4+29 x^3+68 x^2+39 x+83$
- $y^2=34 x^6+82 x^5+16 x^4+68 x^3+30 x^2+45 x+49$
- $y^2=53 x^6+85 x^5+36 x^4+19 x^3+57 x^2+32 x+11$
- $y^2=44 x^6+36 x^5+61 x^4+22 x^3+43 x^2+84$
- $y^2=67 x^6+33 x^5+84 x^4+23 x^3+81 x^2+50 x+20$
- $y^2=71 x^6+37 x^5+78 x^4+22 x^3+70 x^2+60 x+76$
- $y^2=47 x^6+81 x^5+69 x^4+57 x^3+88 x^2+30 x+64$
- $y^2=80 x^6+23 x^5+34 x^4+60 x^3+43 x^2+41 x+75$
- $y^2=52 x^6+26 x^5+84 x^4+80 x^3+15 x^2+23 x+1$
- $y^2=70 x^6+77 x^5+75 x^4+13 x^3+17 x^2+88 x+6$
- $y^2=66 x^6+68 x^5+53 x^4+26 x^3+44 x^2+79 x+64$
- $y^2=34 x^6+87 x^5+84 x^4+82 x^3+67 x^2+88 x+72$
- $y^2=69 x^6+15 x^5+44 x^4+14 x^3+88 x^2+25 x+5$
- $y^2=7 x^6+67 x^5+47 x^4+87 x^3+16 x^2+71 x+51$
- $y^2=87 x^5+48 x^4+48 x^3+3 x^2+84 x+71$
- $y^2=38 x^6+8 x^5+26 x^4+33 x^3+81 x^2+37 x+8$
- $y^2=50 x^6+39 x^5+69 x^4+13 x^3+54 x^2+60 x+65$
- $y^2=67 x^6+2 x^5+27 x^4+16 x^3+63 x^2+51 x+2$
- $y^2=80 x^6+14 x^5+32 x^4+49 x^3+30 x^2+32 x+1$
- and 260 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.ae $\times$ 1.89.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.