Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 47 x^{2} )( 1 - 2 x + 47 x^{2} )$ |
| $1 - 10 x + 110 x^{2} - 470 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.301698511018$, $\pm0.453403488155$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $120$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1840$ | $5152000$ | $10871995120$ | $23810483200000$ | $52594304998457200$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $2330$ | $104714$ | $4879518$ | $229323958$ | $10779176090$ | $506623000474$ | $23811280247038$ | $1119130450211078$ | $52599132742818650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=36 x^6+24 x^5+11 x^4+22 x^3+40 x^2+7 x+4$
- $y^2=5 x^6+46 x^5+46 x^4+28 x^3+34 x^2+29 x+33$
- $y^2=43 x^6+43 x^5+21 x^4+12 x^3+14 x^2+18 x+10$
- $y^2=15 x^6+8 x^5+26 x^4+29 x^3+26 x^2+8 x+15$
- $y^2=45 x^6+9 x^5+40 x^4+14 x^3+19 x^2+44$
- $y^2=11 x^6+37 x^5+45 x^4+46 x^3+16 x^2+11 x+22$
- $y^2=22 x^6+19 x^5+32 x^4+46 x^3+15 x^2+13 x+42$
- $y^2=27 x^6+30 x^5+22 x^4+23 x^3+32 x^2+28 x+7$
- $y^2=25 x^6+4 x^5+35 x^4+41 x^3+29 x^2+8 x+34$
- $y^2=42 x^6+10 x^5+15 x^4+24 x^3+6 x^2+34 x+4$
- $y^2=45 x^6+27 x^5+27 x^4+5 x^3+20 x^2+12 x+39$
- $y^2=33 x^6+9 x^5+18 x^4+44 x^3+10 x^2+9 x$
- $y^2=41 x^6+7 x^4+45 x^3+34 x^2+41 x+22$
- $y^2=34 x^6+20 x^5+10 x^4+11 x^3+37 x^2+20 x+9$
- $y^2=37 x^6+18 x^5+14 x^4+16 x^3+14 x^2+18 x+37$
- $y^2=34 x^6+10 x^5+36 x^4+13 x^3+36 x^2+10 x+34$
- $y^2=20 x^6+4 x^5+5 x^4+30 x^3+45 x^2+43 x+36$
- $y^2=12 x^6+4 x^5+6 x^4+42 x^3+37 x^2+12 x$
- $y^2=21 x^6+27 x^5+17 x^4+35 x^3+32 x^2+42 x+32$
- $y^2=19 x^6+46 x^5+38 x^4+2 x^3+21 x^2+35 x+27$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.ai $\times$ 1.47.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.ag_da | $2$ | (not in LMFDB) |
| 2.47.g_da | $2$ | (not in LMFDB) |
| 2.47.k_eg | $2$ | (not in LMFDB) |