Properties

Label 2.47.ak_eg
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 47 x^{2} )( 1 - 2 x + 47 x^{2} )$
  $1 - 10 x + 110 x^{2} - 470 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.301698511018$, $\pm0.453403488155$
Angle rank:  $2$ (numerical)
Jacobians:  $120$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1840$ $5152000$ $10871995120$ $23810483200000$ $52594304998457200$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $38$ $2330$ $104714$ $4879518$ $229323958$ $10779176090$ $506623000474$ $23811280247038$ $1119130450211078$ $52599132742818650$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.ai $\times$ 1.47.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.ag_da$2$(not in LMFDB)
2.47.g_da$2$(not in LMFDB)
2.47.k_eg$2$(not in LMFDB)