Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - x - 30 x^{2} - 31 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.138043034145$, $\pm0.804709700812$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{41})\) |
Galois group: | $C_2^2$ |
Jacobians: | $28$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $900$ | $867600$ | $882090000$ | $854554766400$ | $819495125797500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $31$ | $901$ | $29608$ | $925321$ | $28624501$ | $887605918$ | $27512809411$ | $852892426801$ | $26439637047928$ | $819628251354301$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=25 x^6+5 x^5+4 x^4+13 x^3+24 x^2+20 x+4$
- $y^2=7 x^6+30 x^5+11 x^4+28 x^3+15 x^2+8 x+9$
- $y^2=9 x^6+6 x^5+20 x^4+19 x^3+21 x^2+23 x+21$
- $y^2=29 x^6+13 x^5+21 x^4+19 x^3+28 x^2+28 x+17$
- $y^2=20 x^6+14 x^5+14 x^4+10 x^3+11 x^2+23 x+17$
- $y^2=27 x^6+15 x^5+x^4+16 x^3+10 x^2+6 x+25$
- $y^2=11 x^6+23 x^5+3 x^4+14 x^3+19 x^2+18 x+2$
- $y^2=9 x^6+14 x^5+25 x^4+9 x^3+8 x^2+5 x+21$
- $y^2=25 x^6+29 x^5+16 x^4+2 x^3+2 x^2+23 x+12$
- $y^2=30 x^6+23 x^5+7 x^4+30 x^3+22 x^2+5 x+29$
- $y^2=27 x^6+16 x^5+29 x^4+21 x^3+21 x^2+2 x+25$
- $y^2=3 x^6+15 x^5+26 x^4+27 x^3+7 x^2+3 x+16$
- $y^2=7 x^6+22 x^5+8 x^4+24 x^3+28 x^2+21 x+20$
- $y^2=6 x^6+29 x^5+29 x^4+21 x^3+21 x^2+3 x+7$
- $y^2=23 x^6+28 x^5+6 x^4+9 x^3+22 x^2+22 x+2$
- $y^2=x^6+4 x^5+18 x^4+20 x^3+28 x^2+8 x+10$
- $y^2=16 x^6+18 x^5+10 x^4+26 x^3+5 x^2+6 x+24$
- $y^2=x^6+3 x^3+5$
- $y^2=24 x^6+29 x^4+26 x^3+30 x^2+x+11$
- $y^2=7 x^6+11 x^5+23 x^4+7 x^3+8 x^2+5 x+20$
- $y^2=x^6+26 x^5+9 x^4+20 x^3+9 x^2+x+16$
- $y^2=23 x^6+17 x^5+4 x^4+26 x^3+x^2+9 x+24$
- $y^2=28 x^6+14 x^5+25 x^4+10 x^3+20 x^2+27 x+28$
- $y^2=25 x^6+13 x^5+9 x^4+12 x^3+5 x^2+5 x+7$
- $y^2=8 x^6+9 x^5+22 x^4+23 x^3+17 x^2+5 x+7$
- $y^2=16 x^6+21 x^4+12 x^3+7 x^2+9 x+9$
- $y^2=8 x^6+24 x^5+16 x^4+2 x^3+9 x^2+28 x+27$
- $y^2=9 x^6+21 x^4+5 x^3+4 x^2+7 x+27$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{3}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{41})\). |
The base change of $A$ to $\F_{31^{3}}$ is 1.29791.ado 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-123}) \)$)$ |
Base change
This is a primitive isogeny class.