Invariants
| Base field: | $\F_{5}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 2 x + 6 x^{2} - 10 x^{3} + 25 x^{4}$ | 
| Frobenius angles: | $\pm0.242482928382$, $\pm0.589139206307$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.4400.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $6$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $20$ | $880$ | $15380$ | $408320$ | $10400500$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $4$ | $34$ | $124$ | $654$ | $3324$ | $15634$ | $77284$ | $390174$ | $1952404$ | $9758274$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=2 x^6+3 x^5+x^4+4 x+3$
- $y^2=3 x^5+4 x^4+2$
- $y^2=3 x^5+x^4+x+3$
- $y^2=2 x^6+4 x^4+3 x^3+4 x^2+4 x$
- $y^2=3 x^6+x^5+4 x^4+4 x^2+x+2$
- $y^2=4 x^6+3 x^5+x^4+x^3+2 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5}$.
Endomorphism algebra over $\F_{5}$| The endomorphism algebra of this simple isogeny class is 4.0.4400.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.5.c_g | $2$ | 2.25.i_bu | 
