Properties

Label 2-8330-1.1-c1-0-203
Degree $2$
Conductor $8330$
Sign $-1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s + 5-s − 2·6-s − 8-s + 9-s − 10-s + 6·11-s + 2·12-s − 2·13-s + 2·15-s + 16-s − 17-s − 18-s − 8·19-s + 20-s − 6·22-s − 6·23-s − 2·24-s + 25-s + 2·26-s − 4·27-s − 6·29-s − 2·30-s − 2·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.80·11-s + 0.577·12-s − 0.554·13-s + 0.516·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 1.83·19-s + 0.223·20-s − 1.27·22-s − 1.25·23-s − 0.408·24-s + 1/5·25-s + 0.392·26-s − 0.769·27-s − 1.11·29-s − 0.365·30-s − 0.359·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64937634597688026475232614092, −6.81678409145107357232090044018, −6.33709363386023823699422699183, −5.59768979729513323582668574249, −4.25266572777588959654965443768, −3.89284430095376585315481459619, −2.86923362550471534149188750118, −2.03346001336212129243808413705, −1.60366368325084918352491392006, 0, 1.60366368325084918352491392006, 2.03346001336212129243808413705, 2.86923362550471534149188750118, 3.89284430095376585315481459619, 4.25266572777588959654965443768, 5.59768979729513323582668574249, 6.33709363386023823699422699183, 6.81678409145107357232090044018, 7.64937634597688026475232614092

Graph of the $Z$-function along the critical line