L(s) = 1 | − 2-s + 2·3-s + 4-s + 5-s − 2·6-s − 8-s + 9-s − 10-s + 6·11-s + 2·12-s − 2·13-s + 2·15-s + 16-s − 17-s − 18-s − 8·19-s + 20-s − 6·22-s − 6·23-s − 2·24-s + 25-s + 2·26-s − 4·27-s − 6·29-s − 2·30-s − 2·31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.80·11-s + 0.577·12-s − 0.554·13-s + 0.516·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 1.83·19-s + 0.223·20-s − 1.27·22-s − 1.25·23-s − 0.408·24-s + 1/5·25-s + 0.392·26-s − 0.769·27-s − 1.11·29-s − 0.365·30-s − 0.359·31-s − 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 5 | \( 1 - T \) | |
| 7 | \( 1 \) | |
| 17 | \( 1 + T \) | |
good | 3 | \( 1 - 2 T + p T^{2} \) | 1.3.ac |
| 11 | \( 1 - 6 T + p T^{2} \) | 1.11.ag |
| 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c |
| 19 | \( 1 + 8 T + p T^{2} \) | 1.19.i |
| 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g |
| 31 | \( 1 + 2 T + p T^{2} \) | 1.31.c |
| 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac |
| 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag |
| 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e |
| 47 | \( 1 + 12 T + p T^{2} \) | 1.47.m |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 + p T^{2} \) | 1.59.a |
| 61 | \( 1 + 2 T + p T^{2} \) | 1.61.c |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 + 6 T + p T^{2} \) | 1.71.g |
| 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c |
| 79 | \( 1 + 10 T + p T^{2} \) | 1.79.k |
| 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m |
| 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g |
| 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.64937634597688026475232614092, −6.81678409145107357232090044018, −6.33709363386023823699422699183, −5.59768979729513323582668574249, −4.25266572777588959654965443768, −3.89284430095376585315481459619, −2.86923362550471534149188750118, −2.03346001336212129243808413705, −1.60366368325084918352491392006, 0,
1.60366368325084918352491392006, 2.03346001336212129243808413705, 2.86923362550471534149188750118, 3.89284430095376585315481459619, 4.25266572777588959654965443768, 5.59768979729513323582668574249, 6.33709363386023823699422699183, 6.81678409145107357232090044018, 7.64937634597688026475232614092