Properties

Label 8330.m
Number of curves $4$
Conductor $8330$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8330.m have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8330.m do not have complex multiplication.

Modular form 8330.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} + q^{5} - 2 q^{6} - q^{8} + q^{9} - q^{10} + 6 q^{11} + 2 q^{12} - 2 q^{13} + 2 q^{15} + q^{16} - q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8330.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8330.m1 8330k3 \([1, 1, 0, -204257, 6903989]\) \(8010684753304969/4456448000000\) \(524296650752000000\) \([2]\) \(172800\) \(2.0904\)  
8330.m2 8330k1 \([1, 1, 0, -125122, -17087244]\) \(1841373668746009/31443200\) \(3699261036800\) \([2]\) \(57600\) \(1.5411\) \(\Gamma_0(N)\)-optimal
8330.m3 8330k2 \([1, 1, 0, -121202, -18202876]\) \(-1673672305534489/241375690000\) \(-28397608552810000\) \([2]\) \(115200\) \(1.8877\)  
8330.m4 8330k4 \([1, 1, 0, 799263, 55675061]\) \(479958568556831351/289000000000000\) \(-34000561000000000000\) \([2]\) \(345600\) \(2.4370\)