Properties

Label 2-74360-1.1-c1-0-7
Degree $2$
Conductor $74360$
Sign $-1$
Analytic cond. $593.767$
Root an. cond. $24.3673$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s − 3·9-s + 11-s − 6·17-s − 4·19-s + 4·23-s + 25-s − 2·29-s − 8·31-s + 4·35-s + 10·37-s − 10·41-s + 3·45-s − 4·47-s + 9·49-s − 10·53-s − 55-s + 4·59-s − 2·61-s + 12·63-s + 8·67-s + 14·73-s − 4·77-s − 16·79-s + 9·81-s + 8·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s − 9-s + 0.301·11-s − 1.45·17-s − 0.917·19-s + 0.834·23-s + 1/5·25-s − 0.371·29-s − 1.43·31-s + 0.676·35-s + 1.64·37-s − 1.56·41-s + 0.447·45-s − 0.583·47-s + 9/7·49-s − 1.37·53-s − 0.134·55-s + 0.520·59-s − 0.256·61-s + 1.51·63-s + 0.977·67-s + 1.63·73-s − 0.455·77-s − 1.80·79-s + 81-s + 0.878·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74360\)    =    \(2^{3} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(593.767\)
Root analytic conductor: \(24.3673\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 74360,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34770829279910, −13.78853863808435, −13.11411551755296, −12.85381253025164, −12.59656910691074, −11.61733475622406, −11.39471335276297, −10.91948294869487, −10.35745405130108, −9.670860456185036, −9.140553475110615, −8.911910936511003, −8.296709897011443, −7.678284554300514, −6.962187073682659, −6.416948659432329, −6.343674677994906, −5.464114235229357, −4.883125315666872, −4.150182891374540, −3.599134112739104, −3.104875603168954, −2.485872204399134, −1.813368690510553, −0.5635431551902857, 0, 0.5635431551902857, 1.813368690510553, 2.485872204399134, 3.104875603168954, 3.599134112739104, 4.150182891374540, 4.883125315666872, 5.464114235229357, 6.343674677994906, 6.416948659432329, 6.962187073682659, 7.678284554300514, 8.296709897011443, 8.911910936511003, 9.140553475110615, 9.670860456185036, 10.35745405130108, 10.91948294869487, 11.39471335276297, 11.61733475622406, 12.59656910691074, 12.85381253025164, 13.11411551755296, 13.78853863808435, 14.34770829279910

Graph of the $Z$-function along the critical line