Properties

Label 74360.f
Number of curves $4$
Conductor $74360$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 74360.f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 74360.f do not have complex multiplication.

Modular form 74360.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} - 3 q^{9} + q^{11} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 74360.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
74360.f1 74360o4 \([0, 0, 0, -1275443, -28530242]\) \(46424454082884/26794860125\) \(132437680133213312000\) \([2]\) \(2211840\) \(2.5506\)  
74360.f2 74360o2 \([0, 0, 0, -852943, 302118258]\) \(55537159171536/228765625\) \(282677242276000000\) \([2, 2]\) \(1105920\) \(2.2040\)  
74360.f3 74360o1 \([0, 0, 0, -852098, 302748797]\) \(885956203616256/15125\) \(1168087778000\) \([2]\) \(552960\) \(1.8574\) \(\Gamma_0(N)\)-optimal
74360.f4 74360o3 \([0, 0, 0, -443963, 592412262]\) \(-1957960715364/29541015625\) \(-146010972250000000000\) \([2]\) \(2211840\) \(2.5506\)