Properties

Label 2-4550-1.1-c1-0-105
Degree $2$
Conductor $4550$
Sign $-1$
Analytic cond. $36.3319$
Root an. cond. $6.02759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 3·9-s + 4·11-s + 13-s − 14-s + 16-s − 2·17-s − 3·18-s − 4·19-s + 4·22-s − 8·23-s + 26-s − 28-s − 2·29-s + 4·31-s + 32-s − 2·34-s − 3·36-s − 10·37-s − 4·38-s − 6·41-s + 4·44-s − 8·46-s − 8·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 9-s + 1.20·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.485·17-s − 0.707·18-s − 0.917·19-s + 0.852·22-s − 1.66·23-s + 0.196·26-s − 0.188·28-s − 0.371·29-s + 0.718·31-s + 0.176·32-s − 0.342·34-s − 1/2·36-s − 1.64·37-s − 0.648·38-s − 0.937·41-s + 0.603·44-s − 1.17·46-s − 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4550\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(36.3319\)
Root analytic conductor: \(6.02759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.144982638821765981876457323803, −6.83315548318213432660205909235, −6.51238220126295394483260801605, −5.82474633559886749958467018457, −5.02524487839808832244639209570, −3.99584432984049190862842180737, −3.59650304472002591854313626644, −2.51727608734179409940874956555, −1.64707732856571780212133836156, 0, 1.64707732856571780212133836156, 2.51727608734179409940874956555, 3.59650304472002591854313626644, 3.99584432984049190862842180737, 5.02524487839808832244639209570, 5.82474633559886749958467018457, 6.51238220126295394483260801605, 6.83315548318213432660205909235, 8.144982638821765981876457323803

Graph of the $Z$-function along the critical line