Properties

Label 2-4095-1.1-c1-0-19
Degree $2$
Conductor $4095$
Sign $1$
Analytic cond. $32.6987$
Root an. cond. $5.71828$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 5-s − 7-s − 3·8-s + 10-s − 6·11-s − 13-s − 14-s − 16-s + 4·17-s − 4·19-s − 20-s − 6·22-s + 25-s − 26-s + 28-s + 4·29-s + 5·32-s + 4·34-s − 35-s + 8·37-s − 4·38-s − 3·40-s + 6·41-s + 2·43-s + 6·44-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.447·5-s − 0.377·7-s − 1.06·8-s + 0.316·10-s − 1.80·11-s − 0.277·13-s − 0.267·14-s − 1/4·16-s + 0.970·17-s − 0.917·19-s − 0.223·20-s − 1.27·22-s + 1/5·25-s − 0.196·26-s + 0.188·28-s + 0.742·29-s + 0.883·32-s + 0.685·34-s − 0.169·35-s + 1.31·37-s − 0.648·38-s − 0.474·40-s + 0.937·41-s + 0.304·43-s + 0.904·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4095 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4095 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4095\)    =    \(3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(32.6987\)
Root analytic conductor: \(5.71828\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4095,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.658286789\)
\(L(\frac12)\) \(\approx\) \(1.658286789\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.200109623937110972678281518993, −7.926433559933441013133611029161, −6.75817195816744273833310071561, −5.98566302017282623005442435709, −5.36986192821416057446451689039, −4.79914231490961151265743023397, −3.91384611069842200401537022035, −2.92643279177267796676948883958, −2.37628438383618005401422317867, −0.63534511591295318876592722009, 0.63534511591295318876592722009, 2.37628438383618005401422317867, 2.92643279177267796676948883958, 3.91384611069842200401537022035, 4.79914231490961151265743023397, 5.36986192821416057446451689039, 5.98566302017282623005442435709, 6.75817195816744273833310071561, 7.926433559933441013133611029161, 8.200109623937110972678281518993

Graph of the $Z$-function along the critical line