Properties

Label 2-394944-1.1-c1-0-202
Degree $2$
Conductor $394944$
Sign $-1$
Analytic cond. $3153.64$
Root an. cond. $56.1573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 4·7-s + 9-s − 13-s + 3·15-s + 17-s − 19-s − 4·21-s + 9·23-s + 4·25-s − 27-s + 6·29-s + 2·31-s − 12·35-s + 4·37-s + 39-s + 3·41-s − 7·43-s − 3·45-s − 6·47-s + 9·49-s − 51-s + 6·53-s + 57-s − 6·59-s + 8·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 1.51·7-s + 1/3·9-s − 0.277·13-s + 0.774·15-s + 0.242·17-s − 0.229·19-s − 0.872·21-s + 1.87·23-s + 4/5·25-s − 0.192·27-s + 1.11·29-s + 0.359·31-s − 2.02·35-s + 0.657·37-s + 0.160·39-s + 0.468·41-s − 1.06·43-s − 0.447·45-s − 0.875·47-s + 9/7·49-s − 0.140·51-s + 0.824·53-s + 0.132·57-s − 0.781·59-s + 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(394944\)    =    \(2^{6} \cdot 3 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3153.64\)
Root analytic conductor: \(56.1573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 394944,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.54987546549982, −12.14291056731399, −11.58584144849214, −11.36515762213871, −11.07645678161443, −10.65207989819258, −10.02482238716172, −9.622564347960882, −8.785136030961291, −8.539954821970916, −8.080257865923968, −7.674031323581306, −7.258939176462066, −6.761548187552285, −6.339027973112722, −5.509513772815292, −5.088993919329893, −4.689156991654245, −4.435095516347060, −3.753658532408727, −3.247030841083206, −2.585514791805842, −1.960393321322150, −1.054893534107099, −0.9238386970547174, 0, 0.9238386970547174, 1.054893534107099, 1.960393321322150, 2.585514791805842, 3.247030841083206, 3.753658532408727, 4.435095516347060, 4.689156991654245, 5.088993919329893, 5.509513772815292, 6.339027973112722, 6.761548187552285, 7.258939176462066, 7.674031323581306, 8.080257865923968, 8.539954821970916, 8.785136030961291, 9.622564347960882, 10.02482238716172, 10.65207989819258, 11.07645678161443, 11.36515762213871, 11.58584144849214, 12.14291056731399, 12.54987546549982

Graph of the $Z$-function along the critical line