Properties

Label 2-38720-1.1-c1-0-5
Degree $2$
Conductor $38720$
Sign $1$
Analytic cond. $309.180$
Root an. cond. $17.5835$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s − 2·13-s + 2·17-s − 4·19-s + 25-s − 6·29-s + 4·31-s + 10·37-s + 6·41-s + 4·43-s + 3·45-s − 8·47-s − 7·49-s − 6·53-s − 12·59-s + 2·61-s + 2·65-s − 8·67-s − 12·71-s + 2·73-s + 8·79-s + 9·81-s − 12·83-s − 2·85-s − 6·89-s + 4·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s − 0.554·13-s + 0.485·17-s − 0.917·19-s + 1/5·25-s − 1.11·29-s + 0.718·31-s + 1.64·37-s + 0.937·41-s + 0.609·43-s + 0.447·45-s − 1.16·47-s − 49-s − 0.824·53-s − 1.56·59-s + 0.256·61-s + 0.248·65-s − 0.977·67-s − 1.42·71-s + 0.234·73-s + 0.900·79-s + 81-s − 1.31·83-s − 0.216·85-s − 0.635·89-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38720\)    =    \(2^{6} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(309.180\)
Root analytic conductor: \(17.5835\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38720,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8271584545\)
\(L(\frac12)\) \(\approx\) \(0.8271584545\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93529943583421, −14.37912760824684, −13.91728064945609, −13.14711078693415, −12.74460217489228, −12.22066988479067, −11.63262699394816, −11.12296054334810, −10.85200419360842, −9.980614478580140, −9.522068403675479, −8.974965154552911, −8.323651256414687, −7.840376946929737, −7.456059843894857, −6.605314344917588, −6.018129548155382, −5.648705668810763, −4.649254596509279, −4.447232005095818, −3.473065046264370, −2.936609164335351, −2.315682084357367, −1.398319194235463, −0.3340488293757348, 0.3340488293757348, 1.398319194235463, 2.315682084357367, 2.936609164335351, 3.473065046264370, 4.447232005095818, 4.649254596509279, 5.648705668810763, 6.018129548155382, 6.605314344917588, 7.456059843894857, 7.840376946929737, 8.323651256414687, 8.974965154552911, 9.522068403675479, 9.980614478580140, 10.85200419360842, 11.12296054334810, 11.63262699394816, 12.22066988479067, 12.74460217489228, 13.14711078693415, 13.91728064945609, 14.37912760824684, 14.93529943583421

Graph of the $Z$-function along the critical line