Properties

Label 38720.bo
Number of curves $4$
Conductor $38720$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38720.bo have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38720.bo do not have complex multiplication.

Modular form 38720.2.a.bo

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 38720.bo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38720.bo1 38720e4 \([0, 0, 0, -284108, -58287152]\) \(43688592648/55\) \(3192778096640\) \([2]\) \(122880\) \(1.6781\)  
38720.bo2 38720e2 \([0, 0, 0, -17908, -894432]\) \(87528384/3025\) \(21950349414400\) \([2, 2]\) \(61440\) \(1.3315\)  
38720.bo3 38720e1 \([0, 0, 0, -2783, 37268]\) \(21024576/6875\) \(779486840000\) \([2]\) \(30720\) \(0.98495\) \(\Gamma_0(N)\)-optimal
38720.bo4 38720e3 \([0, 0, 0, 6292, -3130512]\) \(474552/73205\) \(-4249587646627840\) \([2]\) \(122880\) \(1.6781\)