Properties

Label 2-356928-1.1-c1-0-78
Degree $2$
Conductor $356928$
Sign $-1$
Analytic cond. $2850.08$
Root an. cond. $53.3861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 4·7-s + 9-s − 11-s + 2·15-s + 6·17-s − 8·19-s + 4·21-s − 25-s − 27-s + 6·29-s + 33-s + 8·35-s + 6·37-s + 10·41-s + 8·43-s − 2·45-s + 9·49-s − 6·51-s − 6·53-s + 2·55-s + 8·57-s + 4·59-s + 2·61-s − 4·63-s − 12·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s + 0.516·15-s + 1.45·17-s − 1.83·19-s + 0.872·21-s − 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.174·33-s + 1.35·35-s + 0.986·37-s + 1.56·41-s + 1.21·43-s − 0.298·45-s + 9/7·49-s − 0.840·51-s − 0.824·53-s + 0.269·55-s + 1.05·57-s + 0.520·59-s + 0.256·61-s − 0.503·63-s − 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(356928\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2850.08\)
Root analytic conductor: \(53.3861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 356928,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72444077450768, −12.34588170840394, −12.02020154388493, −11.31990020850676, −11.03612406162401, −10.42885964515850, −10.11229641023157, −9.717906767561937, −9.144957172721737, −8.699568630605942, −7.953341816110386, −7.819643472684947, −7.182071830818957, −6.714486004420447, −6.138557996152687, −5.961252636419485, −5.407842717601249, −4.556611183463631, −4.238058907678181, −3.824267926399901, −3.140732411254940, −2.767214322844468, −2.135811968065227, −1.135739524438072, −0.5890164102584634, 0, 0.5890164102584634, 1.135739524438072, 2.135811968065227, 2.767214322844468, 3.140732411254940, 3.824267926399901, 4.238058907678181, 4.556611183463631, 5.407842717601249, 5.961252636419485, 6.138557996152687, 6.714486004420447, 7.182071830818957, 7.819643472684947, 7.953341816110386, 8.699568630605942, 9.144957172721737, 9.717906767561937, 10.11229641023157, 10.42885964515850, 11.03612406162401, 11.31990020850676, 12.02020154388493, 12.34588170840394, 12.72444077450768

Graph of the $Z$-function along the critical line