Properties

Label 2-2730-1.1-c1-0-11
Degree $2$
Conductor $2730$
Sign $1$
Analytic cond. $21.7991$
Root an. cond. $4.66895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s − 2·11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 6·17-s + 18-s − 2·19-s − 20-s − 21-s − 2·22-s − 4·23-s − 24-s + 25-s + 26-s − 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 0.458·19-s − 0.223·20-s − 0.218·21-s − 0.426·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2730\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(21.7991\)
Root analytic conductor: \(4.66895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2730,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.272980963\)
\(L(\frac12)\) \(\approx\) \(2.272980963\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 - T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.628061145911597081404836505184, −7.85249275293685041760385460781, −7.35208362597312479853045066833, −6.29912454633333280804413074205, −5.69876426716871714388295941868, −4.93221094181939303672799430536, −4.16767329291848311362731579414, −3.32324871579854953106753041219, −2.21014379877265652501289721456, −0.887609817770847120460902343637, 0.887609817770847120460902343637, 2.21014379877265652501289721456, 3.32324871579854953106753041219, 4.16767329291848311362731579414, 4.93221094181939303672799430536, 5.69876426716871714388295941868, 6.29912454633333280804413074205, 7.35208362597312479853045066833, 7.85249275293685041760385460781, 8.628061145911597081404836505184

Graph of the $Z$-function along the critical line