Properties

Label 2-27200-1.1-c1-0-43
Degree $2$
Conductor $27200$
Sign $1$
Analytic cond. $217.193$
Root an. cond. $14.7374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·7-s + 9-s + 6·11-s + 2·13-s − 17-s + 8·19-s + 4·21-s − 6·23-s − 4·27-s + 6·29-s − 2·31-s + 12·33-s + 2·37-s + 4·39-s − 6·41-s + 4·43-s + 12·47-s − 3·49-s − 2·51-s + 6·53-s + 16·57-s − 2·61-s + 2·63-s − 8·67-s − 12·69-s + 6·71-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.755·7-s + 1/3·9-s + 1.80·11-s + 0.554·13-s − 0.242·17-s + 1.83·19-s + 0.872·21-s − 1.25·23-s − 0.769·27-s + 1.11·29-s − 0.359·31-s + 2.08·33-s + 0.328·37-s + 0.640·39-s − 0.937·41-s + 0.609·43-s + 1.75·47-s − 3/7·49-s − 0.280·51-s + 0.824·53-s + 2.11·57-s − 0.256·61-s + 0.251·63-s − 0.977·67-s − 1.44·69-s + 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27200\)    =    \(2^{6} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(217.193\)
Root analytic conductor: \(14.7374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.309518727\)
\(L(\frac12)\) \(\approx\) \(5.309518727\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.18064267315741, −14.49116012077427, −14.23960827006188, −13.70046914885847, −13.62140417757425, −12.49228126907647, −11.93520486705124, −11.62856105680687, −11.07440119768520, −10.22882060078548, −9.661426059040218, −9.137333423389828, −8.700222024030814, −8.239632936655627, −7.553255100318958, −7.139848263895653, −6.261947494918183, −5.796178245704370, −4.930383752572318, −4.153637578357133, −3.720871249569252, −3.108912986950062, −2.259764768374674, −1.546494552108642, −0.9188498611218966, 0.9188498611218966, 1.546494552108642, 2.259764768374674, 3.108912986950062, 3.720871249569252, 4.153637578357133, 4.930383752572318, 5.796178245704370, 6.261947494918183, 7.139848263895653, 7.553255100318958, 8.239632936655627, 8.700222024030814, 9.137333423389828, 9.661426059040218, 10.22882060078548, 11.07440119768520, 11.62856105680687, 11.93520486705124, 12.49228126907647, 13.62140417757425, 13.70046914885847, 14.23960827006188, 14.49116012077427, 15.18064267315741

Graph of the $Z$-function along the critical line