Properties

Label 2-21450-1.1-c1-0-61
Degree $2$
Conductor $21450$
Sign $-1$
Analytic cond. $171.279$
Root an. cond. $13.0873$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s + 11-s − 12-s − 13-s + 16-s + 4·17-s + 18-s − 2·19-s + 22-s + 6·23-s − 24-s − 26-s − 27-s − 2·29-s − 10·31-s + 32-s − 33-s + 4·34-s + 36-s + 4·37-s − 2·38-s + 39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s − 0.277·13-s + 1/4·16-s + 0.970·17-s + 0.235·18-s − 0.458·19-s + 0.213·22-s + 1.25·23-s − 0.204·24-s − 0.196·26-s − 0.192·27-s − 0.371·29-s − 1.79·31-s + 0.176·32-s − 0.174·33-s + 0.685·34-s + 1/6·36-s + 0.657·37-s − 0.324·38-s + 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21450\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(171.279\)
Root analytic conductor: \(13.0873\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 21450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.72322884277315, −15.20556455809633, −14.75906351919054, −14.29555411819011, −13.63716425774368, −12.94223527210002, −12.68631060442351, −12.06982870674492, −11.52130309929505, −11.00072745380546, −10.52479151217567, −9.859455728704444, −9.220520803312598, −8.636556451440601, −7.663379659322597, −7.325846010098757, −6.680821548169021, −5.963752507651188, −5.536508214779054, −4.849190413238363, −4.319669945892900, −3.467852260334300, −2.973221245455618, −1.892518534141159, −1.229848446500133, 0, 1.229848446500133, 1.892518534141159, 2.973221245455618, 3.467852260334300, 4.319669945892900, 4.849190413238363, 5.536508214779054, 5.963752507651188, 6.680821548169021, 7.325846010098757, 7.663379659322597, 8.636556451440601, 9.220520803312598, 9.859455728704444, 10.52479151217567, 11.00072745380546, 11.52130309929505, 12.06982870674492, 12.68631060442351, 12.94223527210002, 13.63716425774368, 14.29555411819011, 14.75906351919054, 15.20556455809633, 15.72322884277315

Graph of the $Z$-function along the critical line