Properties

Label 2-164560-1.1-c1-0-61
Degree $2$
Conductor $164560$
Sign $-1$
Analytic cond. $1314.01$
Root an. cond. $36.2493$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 2·7-s + 9-s − 2·13-s − 2·15-s − 17-s + 8·19-s + 4·21-s + 6·23-s + 25-s − 4·27-s + 6·29-s − 2·31-s − 2·35-s + 2·37-s − 4·39-s + 6·41-s − 4·43-s − 45-s − 12·47-s − 3·49-s − 2·51-s + 6·53-s + 16·57-s − 2·61-s + 2·63-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.554·13-s − 0.516·15-s − 0.242·17-s + 1.83·19-s + 0.872·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s − 0.359·31-s − 0.338·35-s + 0.328·37-s − 0.640·39-s + 0.937·41-s − 0.609·43-s − 0.149·45-s − 1.75·47-s − 3/7·49-s − 0.280·51-s + 0.824·53-s + 2.11·57-s − 0.256·61-s + 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 164560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(164560\)    =    \(2^{4} \cdot 5 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1314.01\)
Root analytic conductor: \(36.2493\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 164560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49663950752115, −13.19665095600178, −12.59596520104404, −11.97563053430707, −11.56807301826579, −11.27626769146509, −10.63790384548972, −10.04590547171390, −9.505838005749334, −9.175083887810009, −8.632574063749338, −8.185831696972459, −7.713019039721047, −7.407224135351797, −6.880599982592705, −6.202459780155269, −5.452121680070794, −4.812670062150829, −4.752828163720900, −3.723981717870615, −3.412816333663793, −2.727715564112103, −2.458238506320094, −1.472611048496076, −1.075594708130655, 0, 1.075594708130655, 1.472611048496076, 2.458238506320094, 2.727715564112103, 3.412816333663793, 3.723981717870615, 4.752828163720900, 4.812670062150829, 5.452121680070794, 6.202459780155269, 6.880599982592705, 7.407224135351797, 7.713019039721047, 8.185831696972459, 8.632574063749338, 9.175083887810009, 9.505838005749334, 10.04590547171390, 10.63790384548972, 11.27626769146509, 11.56807301826579, 11.97563053430707, 12.59596520104404, 13.19665095600178, 13.49663950752115

Graph of the $Z$-function along the critical line