Properties

Label 2-125840-1.1-c1-0-55
Degree $2$
Conductor $125840$
Sign $-1$
Analytic cond. $1004.83$
Root an. cond. $31.6991$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s − 13-s − 2·15-s + 6·17-s + 8·19-s − 8·21-s + 25-s − 4·27-s + 4·31-s + 4·35-s + 2·37-s − 2·39-s − 12·41-s + 8·43-s − 45-s − 6·47-s + 9·49-s + 12·51-s − 12·53-s + 16·57-s − 12·59-s − 8·61-s − 4·63-s + 65-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.277·13-s − 0.516·15-s + 1.45·17-s + 1.83·19-s − 1.74·21-s + 1/5·25-s − 0.769·27-s + 0.718·31-s + 0.676·35-s + 0.328·37-s − 0.320·39-s − 1.87·41-s + 1.21·43-s − 0.149·45-s − 0.875·47-s + 9/7·49-s + 1.68·51-s − 1.64·53-s + 2.11·57-s − 1.56·59-s − 1.02·61-s − 0.503·63-s + 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 125840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 125840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(125840\)    =    \(2^{4} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1004.83\)
Root analytic conductor: \(31.6991\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 125840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85402356804568, −13.42985445291115, −12.75573224432769, −12.42296634912733, −11.88796704312467, −11.56415572119363, −10.70299354963975, −10.20764972427822, −9.604591637795067, −9.469062060312869, −9.073336294263561, −8.189643456930420, −7.917395042957876, −7.480091072625763, −6.971420961455906, −6.260090020640049, −5.885701766527669, −5.108678308352581, −4.641114884185999, −3.600175463603405, −3.381126443294354, −3.118127352761736, −2.531204167447898, −1.607121197567569, −0.8681432636641450, 0, 0.8681432636641450, 1.607121197567569, 2.531204167447898, 3.118127352761736, 3.381126443294354, 3.600175463603405, 4.641114884185999, 5.108678308352581, 5.885701766527669, 6.260090020640049, 6.971420961455906, 7.480091072625763, 7.917395042957876, 8.189643456930420, 9.073336294263561, 9.469062060312869, 9.604591637795067, 10.20764972427822, 10.70299354963975, 11.56415572119363, 11.88796704312467, 12.42296634912733, 12.75573224432769, 13.42985445291115, 13.85402356804568

Graph of the $Z$-function along the critical line