Properties

Label 2-124800-1.1-c1-0-6
Degree $2$
Conductor $124800$
Sign $1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s − 13-s + 2·17-s − 4·19-s + 4·21-s + 2·23-s − 27-s − 6·29-s − 2·31-s + 2·37-s + 39-s + 6·41-s + 12·43-s − 8·47-s + 9·49-s − 2·51-s + 6·53-s + 4·57-s + 4·59-s − 10·61-s − 4·63-s − 14·67-s − 2·69-s + 6·71-s + 6·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s − 0.277·13-s + 0.485·17-s − 0.917·19-s + 0.872·21-s + 0.417·23-s − 0.192·27-s − 1.11·29-s − 0.359·31-s + 0.328·37-s + 0.160·39-s + 0.937·41-s + 1.82·43-s − 1.16·47-s + 9/7·49-s − 0.280·51-s + 0.824·53-s + 0.529·57-s + 0.520·59-s − 1.28·61-s − 0.503·63-s − 1.71·67-s − 0.240·69-s + 0.712·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7118637020\)
\(L(\frac12)\) \(\approx\) \(0.7118637020\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32134268229895, −12.84549659742910, −12.70194786519476, −12.24598074746690, −11.53614539036354, −11.14568590719578, −10.56296410491148, −10.16827160547051, −9.681208235034929, −9.105304139703019, −8.938018065384209, −7.976105377076302, −7.467559542549199, −7.073366715796840, −6.445334277421540, −6.007355268634207, −5.682205585663469, −4.974326993649821, −4.275857972966937, −3.846578513594677, −3.188767089271237, −2.638615953057737, −1.956010549235294, −1.050251176203937, −0.2983229555172483, 0.2983229555172483, 1.050251176203937, 1.956010549235294, 2.638615953057737, 3.188767089271237, 3.846578513594677, 4.275857972966937, 4.974326993649821, 5.682205585663469, 6.007355268634207, 6.445334277421540, 7.073366715796840, 7.467559542549199, 7.976105377076302, 8.938018065384209, 9.105304139703019, 9.681208235034929, 10.16827160547051, 10.56296410491148, 11.14568590719578, 11.53614539036354, 12.24598074746690, 12.70194786519476, 12.84549659742910, 13.32134268229895

Graph of the $Z$-function along the critical line