Properties

Label 2-12240-1.1-c1-0-26
Degree $2$
Conductor $12240$
Sign $1$
Analytic cond. $97.7368$
Root an. cond. $9.88619$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·11-s + 6·13-s + 17-s + 8·19-s − 8·23-s + 25-s + 6·29-s + 8·31-s + 8·37-s − 6·41-s + 10·43-s − 8·47-s − 7·49-s + 14·53-s − 2·55-s − 6·61-s − 6·65-s − 2·67-s + 6·71-s − 4·73-s − 8·79-s + 4·83-s − 85-s + 8·89-s − 8·95-s + 12·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.603·11-s + 1.66·13-s + 0.242·17-s + 1.83·19-s − 1.66·23-s + 1/5·25-s + 1.11·29-s + 1.43·31-s + 1.31·37-s − 0.937·41-s + 1.52·43-s − 1.16·47-s − 49-s + 1.92·53-s − 0.269·55-s − 0.768·61-s − 0.744·65-s − 0.244·67-s + 0.712·71-s − 0.468·73-s − 0.900·79-s + 0.439·83-s − 0.108·85-s + 0.847·89-s − 0.820·95-s + 1.21·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12240\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(97.7368\)
Root analytic conductor: \(9.88619\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.589646134\)
\(L(\frac12)\) \(\approx\) \(2.589646134\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.27408422819681, −15.74542843315136, −15.50980268029461, −14.47390549148005, −14.10799441253504, −13.57403346646460, −13.06403948661963, −12.10572728444630, −11.72316509698590, −11.45788149655323, −10.49419280716993, −10.04711295470237, −9.349744395188395, −8.704632875327311, −8.007308127999438, −7.728470432273235, −6.675986914619620, −6.231677846328660, −5.609743800549409, −4.687597408756573, −3.994348846680126, −3.433694532439534, −2.665270702791336, −1.412637683006201, −0.8293525149789222, 0.8293525149789222, 1.412637683006201, 2.665270702791336, 3.433694532439534, 3.994348846680126, 4.687597408756573, 5.609743800549409, 6.231677846328660, 6.675986914619620, 7.728470432273235, 8.007308127999438, 8.704632875327311, 9.349744395188395, 10.04711295470237, 10.49419280716993, 11.45788149655323, 11.72316509698590, 12.10572728444630, 13.06403948661963, 13.57403346646460, 14.10799441253504, 14.47390549148005, 15.50980268029461, 15.74542843315136, 16.27408422819681

Graph of the $Z$-function along the critical line