Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 4 x + 73 x^{2}$ |
| Frobenius angles: | $\pm0.575208518631$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-69}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $78$ | $5460$ | $388206$ | $28392000$ | $2073155838$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $5460$ | $388206$ | $28392000$ | $2073155838$ | $151334344980$ | $11047391894526$ | $806460109728000$ | $58871587120525998$ | $4297625826752649300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+26 x+26$
- $y^2=x^3+58 x+58$
- $y^2=x^3+28 x+28$
- $y^2=x^3+4 x+4$
- $y^2=x^3+53 x+46$
- $y^2=x^3+17 x+17$
- $y^2=x^3+6 x+30$
- $y^2=x^3+72 x+68$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-69}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.73.ae | $2$ | (not in LMFDB) |