Properties

Label 2-106470-1.1-c1-0-109
Degree $2$
Conductor $106470$
Sign $-1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 7-s + 8-s + 10-s − 6·11-s − 14-s + 16-s + 4·19-s + 20-s − 6·22-s + 25-s − 28-s + 4·31-s + 32-s − 35-s + 4·37-s + 4·38-s + 40-s + 6·41-s − 10·43-s − 6·44-s − 6·47-s + 49-s + 50-s − 6·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s + 0.353·8-s + 0.316·10-s − 1.80·11-s − 0.267·14-s + 1/4·16-s + 0.917·19-s + 0.223·20-s − 1.27·22-s + 1/5·25-s − 0.188·28-s + 0.718·31-s + 0.176·32-s − 0.169·35-s + 0.657·37-s + 0.648·38-s + 0.158·40-s + 0.937·41-s − 1.52·43-s − 0.904·44-s − 0.875·47-s + 1/7·49-s + 0.141·50-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.79462539565501, −13.45823451584699, −12.88443073002698, −12.79316669400807, −12.06463800387772, −11.50898692961941, −11.09631374250582, −10.43009429623150, −10.13391420037988, −9.651864386900536, −9.088199407063018, −8.322345209597881, −7.823117539265228, −7.520145237765801, −6.760083122762995, −6.287198944630588, −5.750154251615920, −5.220353346444673, −4.845667438700101, −4.266702295998854, −3.286562186501966, −3.063237668706428, −2.441963580333315, −1.812594434892849, −0.9285340510021432, 0, 0.9285340510021432, 1.812594434892849, 2.441963580333315, 3.063237668706428, 3.286562186501966, 4.266702295998854, 4.845667438700101, 5.220353346444673, 5.750154251615920, 6.287198944630588, 6.760083122762995, 7.520145237765801, 7.823117539265228, 8.322345209597881, 9.088199407063018, 9.651864386900536, 10.13391420037988, 10.43009429623150, 11.09631374250582, 11.50898692961941, 12.06463800387772, 12.79316669400807, 12.88443073002698, 13.45823451584699, 13.79462539565501

Graph of the $Z$-function along the critical line