| L(s) = 1 | + 3-s + 2·7-s + 9-s − 4·19-s + 2·21-s + 6·25-s + 27-s − 6·29-s + 12·31-s + 4·37-s + 4·47-s − 3·49-s + 2·53-s − 4·57-s + 12·59-s + 2·63-s + 6·75-s + 81-s − 16·83-s − 6·87-s + 12·93-s − 4·103-s + 4·111-s + 2·113-s + 2·121-s + 127-s + 131-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 0.755·7-s + 1/3·9-s − 0.917·19-s + 0.436·21-s + 6/5·25-s + 0.192·27-s − 1.11·29-s + 2.15·31-s + 0.657·37-s + 0.583·47-s − 3/7·49-s + 0.274·53-s − 0.529·57-s + 1.56·59-s + 0.251·63-s + 0.692·75-s + 1/9·81-s − 1.75·83-s − 0.643·87-s + 1.24·93-s − 0.394·103-s + 0.379·111-s + 0.188·113-s + 2/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.544970041\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.544970041\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.555002189705458654869928996261, −8.316618033431768854591499790598, −8.063332402052162939100193945194, −7.31987402829276542831799625511, −7.00616485699272467774806186278, −6.48423237759858608774282326564, −5.91031591508502853233310818870, −5.38615572186922390524852344216, −4.68951589441240668548334387524, −4.41157572424766078704073590205, −3.83312899138907642541696558962, −3.03801687984380639633195562028, −2.51962272467889600085657593418, −1.83887034870592950817785607013, −0.931041842329516825417157384683,
0.931041842329516825417157384683, 1.83887034870592950817785607013, 2.51962272467889600085657593418, 3.03801687984380639633195562028, 3.83312899138907642541696558962, 4.41157572424766078704073590205, 4.68951589441240668548334387524, 5.38615572186922390524852344216, 5.91031591508502853233310818870, 6.48423237759858608774282326564, 7.00616485699272467774806186278, 7.31987402829276542831799625511, 8.063332402052162939100193945194, 8.316618033431768854591499790598, 8.555002189705458654869928996261