Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 53 x^{2} )( 1 + 53 x^{2} )$ |
| $1 - 2 x + 106 x^{2} - 106 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.456138099416$, $\pm0.5$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $48$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2808$ | $8491392$ | $22210811064$ | $62177640505344$ | $174876597282669048$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $3018$ | $149188$ | $7880078$ | $418169492$ | $22164860538$ | $1174712921252$ | $62259667505566$ | $3299763483137524$ | $174887471362191018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=21 x^6+33 x^5+24 x^4+47 x^3+40 x^2+21 x+3$
- $y^2=51 x^6+52 x^5+15 x^4+20 x^3+15 x^2+52 x+51$
- $y^2=19 x^6+42 x^5+4 x^4+52 x^3+52 x^2+49 x+32$
- $y^2=19 x^6+51 x^5+43 x^4+x^3+43 x^2+51 x+19$
- $y^2=18 x^6+x^5+50 x^4+40 x^3+34 x^2+46 x+50$
- $y^2=26 x^6+30 x^5+36 x^4+7 x^3+36 x^2+30 x+26$
- $y^2=29 x^6+40 x^5+47 x^4+10 x^3+52 x^2+7 x+47$
- $y^2=27 x^6+15 x^5+48 x^4+51 x^3+48 x^2+15 x+27$
- $y^2=41 x^6+4 x^5+34 x^4+48 x^3+48 x^2+43 x+33$
- $y^2=24 x^6+51 x^5+19 x^3+51 x+24$
- $y^2=43 x^6+46 x^5+22 x^4+9 x^3+41 x^2+15 x+42$
- $y^2=48 x^6+48 x^5+45 x^4+x^3+45 x^2+48 x+48$
- $y^2=34 x^6+15 x^5+19 x^4+5 x^3+33 x^2+36 x+48$
- $y^2=23 x^6+5 x^5+x^4+22 x^3+x^2+5 x+23$
- $y^2=20 x^6+36 x^5+20 x^4+3 x^2+13 x+32$
- $y^2=14 x^6+30 x^5+8 x^4+17 x^3+8 x^2+30 x+14$
- $y^2=12 x^6+10 x^5+49 x^4+33 x^3+38 x^2+28 x+20$
- $y^2=46 x^6+14 x^5+34 x^4+31 x^3+34 x^2+14 x+46$
- $y^2=52 x^6+32 x^5+2 x^4+34 x^3+48 x^2+41 x+9$
- $y^2=29 x^6+6 x^5+49 x^4+4 x^3+49 x^2+6 x+29$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ac $\times$ 1.53.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.dy $\times$ 1.2809.ec. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.c_ec | $2$ | (not in LMFDB) |