Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 30 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.283879576431$, $\pm0.716120423569$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{7}, \sqrt{-43})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $188$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5072$ | $25725184$ | $128099857232$ | $646220326506496$ | $3255243554165398352$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $5102$ | $357912$ | $25430046$ | $1804229352$ | $128099430542$ | $9095120158392$ | $645753464274238$ | $45848500718449032$ | $3255243557320915502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 188 curves (of which all are hyperelliptic):
- $y^2=68 x^6+58 x^5+4 x^4+61 x^3+36 x^2+3 x+14$
- $y^2=50 x^6+51 x^5+28 x^4+x^3+39 x^2+21 x+27$
- $y^2=5 x^6+27 x^5+68 x^4+50 x^3+45 x^2+19 x+3$
- $y^2=15 x^6+19 x^5+57 x^4+x^3+3 x^2+68 x+70$
- $y^2=34 x^6+62 x^5+44 x^4+7 x^3+21 x^2+50 x+64$
- $y^2=59 x^6+43 x^5+44 x^4+5 x^3+31 x^2+16 x+47$
- $y^2=58 x^6+17 x^5+24 x^4+35 x^3+4 x^2+41 x+45$
- $y^2=17 x^6+32 x^5+24 x^4+6 x^3+59 x^2+19 x+9$
- $y^2=48 x^6+11 x^5+26 x^4+42 x^3+58 x^2+62 x+63$
- $y^2=14 x^6+65 x^5+17 x^4+37 x^3+24 x^2+45 x+36$
- $y^2=27 x^6+29 x^5+48 x^4+46 x^3+26 x^2+31 x+39$
- $y^2=15 x^6+47 x^5+13 x^4+23 x^3+33 x^2+46 x+56$
- $y^2=34 x^6+45 x^5+20 x^4+19 x^3+18 x^2+38 x+37$
- $y^2=17 x^6+3 x^5+9 x^4+13 x^3+47 x^2+19 x+61$
- $y^2=52 x^6+12 x^5+69 x^4+11 x^3+58 x^2+10 x+45$
- $y^2=61 x^5+3 x^4+51 x^3+60 x^2+29 x+63$
- $y^2=x^5+21 x^4+2 x^3+65 x^2+61 x+15$
- $y^2=8 x^6+60 x^5+36 x^4+46 x^3+43 x^2+28 x+49$
- $y^2=56 x^6+65 x^5+39 x^4+38 x^3+17 x^2+54 x+59$
- $y^2=46 x^6+35 x^5+29 x^4+40 x^3+42 x^2+44 x+14$
- and 168 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{7}, \sqrt{-43})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.be 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-301}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.a_abe | $4$ | (not in LMFDB) |