Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 31 x^{2} )( 1 - 4 x + 31 x^{2} )$ |
$1 - 12 x + 94 x^{2} - 372 x^{3} + 961 x^{4}$ | |
Frobenius angles: | $\pm0.244865078763$, $\pm0.383045975359$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $48$ |
Isomorphism classes: | 232 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $672$ | $967680$ | $903722400$ | $854484664320$ | $819566077559712$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $1006$ | $30332$ | $925246$ | $28626980$ | $887474158$ | $27512586380$ | $852891015166$ | $26439615604532$ | $819628228457326$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=14 x^6+2 x^5+16 x^4+2 x^3+2 x^2+x+28$
- $y^2=25 x^6+25 x^5+18 x^4+24 x^3+18 x^2+25 x+25$
- $y^2=3 x^6+11 x^5+29 x^4+7 x^3+22 x^2+17 x+11$
- $y^2=13 x^6+16 x^5+21 x^4+9 x^3+21 x^2+16 x+13$
- $y^2=24 x^6+28 x^5+17 x^4+12 x^3+24 x^2+7 x+3$
- $y^2=15 x^6+11 x^5+23 x^4+21 x^3+23 x^2+11 x+15$
- $y^2=14 x^6+8 x^5+15 x^4+2 x^3+27 x^2+16 x+7$
- $y^2=24 x^6+22 x^5+3 x^4+2 x^3+15 x^2+29 x+28$
- $y^2=30 x^6+10 x^5+18 x^4+28 x^3+18 x^2+10 x+30$
- $y^2=6 x^6+27 x^5+17 x^4+x^3+24 x^2+30 x+24$
- $y^2=30 x^6+21 x^5+11 x^4+2 x^3+22 x^2+22 x+23$
- $y^2=23 x^6+4 x^5+20 x^4+12 x^3+8 x^2+8 x+21$
- $y^2=30 x^6+x^5+19 x^4+16 x^3+19 x^2+x+30$
- $y^2=18 x^6+8 x^5+8 x^4+26 x^3+20 x^2+2 x+7$
- $y^2=13 x^6+22 x^5+20 x^4+28 x^3+18 x^2+11 x+26$
- $y^2=23 x^6+24 x^5+21 x^4+8 x^2+30 x+10$
- $y^2=20 x^6+14 x^5+6 x^4+26 x^3+25 x^2+3 x+29$
- $y^2=6 x^6+27 x^5+19 x^4+x^3+14 x^2+29 x+12$
- $y^2=13 x^6+11 x^5+5 x^4+23 x^3+4 x^2+12 x+26$
- $y^2=22 x^6+24 x^5+27 x^4+6 x^3+27 x^2+24 x+22$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The isogeny class factors as 1.31.ai $\times$ 1.31.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.