Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 86 x^{2} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.360904175595$, $\pm0.639095824405$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{3}, \sqrt{-55})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $356$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4576$ | $20939776$ | $90457860064$ | $406131478511616$ | $1822837803644736736$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $4662$ | $300764$ | $20154286$ | $1350125108$ | $90457337958$ | $6060711605324$ | $406067753155678$ | $27206534396294948$ | $1822837802737712022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 356 curves (of which all are hyperelliptic):
- $y^2=21 x^6+40 x^5+66 x^4+60 x^3+34 x^2+19 x+10$
- $y^2=42 x^6+13 x^5+65 x^4+53 x^3+x^2+38 x+20$
- $y^2=8 x^6+31 x^5+63 x^4+54 x^3+30 x^2+42 x+23$
- $y^2=21 x^6+39 x^5+40 x^4+35 x^3+17 x^2+2 x+62$
- $y^2=42 x^6+11 x^5+13 x^4+3 x^3+34 x^2+4 x+57$
- $y^2=6 x^6+66 x^5+61 x^4+25 x^3+55 x^2+38 x+55$
- $y^2=45 x^6+25 x^5+65 x^4+7 x^3+44 x^2+43 x+1$
- $y^2=23 x^6+50 x^5+63 x^4+14 x^3+21 x^2+19 x+2$
- $y^2=21 x^6+29 x^5+55 x^4+13 x^3+8 x^2+23 x+20$
- $y^2=42 x^6+58 x^5+43 x^4+26 x^3+16 x^2+46 x+40$
- $y^2=11 x^6+39 x^5+41 x^4+3 x^3+56 x^2+53 x+21$
- $y^2=22 x^6+11 x^5+15 x^4+6 x^3+45 x^2+39 x+42$
- $y^2=38 x^6+40 x^5+61 x^4+66 x^3+48 x^2+45 x+34$
- $y^2=9 x^6+13 x^5+55 x^4+65 x^3+29 x^2+23 x+1$
- $y^2=46 x^6+17 x^5+11 x^4+49 x^3+6 x^2+57 x+45$
- $y^2=25 x^6+34 x^5+22 x^4+31 x^3+12 x^2+47 x+23$
- $y^2=43 x^6+x^5+23 x^4+18 x^3+20 x^2+29 x+24$
- $y^2=49 x^6+40 x^5+49 x^4+43 x^3+19 x^2+2 x+59$
- $y^2=31 x^6+13 x^5+31 x^4+19 x^3+38 x^2+4 x+51$
- $y^2=52 x^6+56 x^5+51 x^4+x^3+19 x^2+58 x+32$
- and 336 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-55})\). |
| The base change of $A$ to $\F_{67^{2}}$ is 1.4489.di 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-165}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.a_adi | $4$ | (not in LMFDB) |
| 2.67.am_el | $12$ | (not in LMFDB) |
| 2.67.m_el | $12$ | (not in LMFDB) |