Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 22 x^{2} + 529 x^{4}$ |
Frobenius angles: | $\pm0.329366328173$, $\pm0.670633671827$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{6}, \sqrt{-17})\) |
Galois group: | $C_2^2$ |
Jacobians: | $50$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $552$ | $304704$ | $148011624$ | $78633133056$ | $41426518985832$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $574$ | $12168$ | $280990$ | $6436344$ | $147987358$ | $3404825448$ | $78311445694$ | $1801152661464$ | $41426526758014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=17 x^6+4 x^5+22 x^4+21 x^3+22 x^2+4 x+11$
- $y^2=16 x^6+20 x^5+18 x^4+13 x^3+18 x^2+20 x+9$
- $y^2=11 x^6+x^5+14 x^4+17 x^3+21 x^2+17 x+18$
- $y^2=9 x^6+5 x^5+x^4+16 x^3+13 x^2+16 x+21$
- $y^2=6 x^6+13 x^3+14 x^2+7 x+3$
- $y^2=7 x^6+19 x^3+x^2+12 x+15$
- $y^2=7 x^6+12 x^5+11 x^4+13 x^3+11 x^2+20 x+5$
- $y^2=12 x^6+14 x^5+9 x^4+19 x^3+9 x^2+8 x+2$
- $y^2=16 x^6+20 x^5+11 x^4+9 x^3+8 x^2+10 x+14$
- $y^2=11 x^6+8 x^5+9 x^4+22 x^3+17 x^2+4 x+1$
- $y^2=8 x^6+11 x^5+2 x^4+20 x^3+10 x^2+21 x+4$
- $y^2=17 x^6+9 x^5+10 x^4+8 x^3+4 x^2+13 x+20$
- $y^2=5 x^6+3 x^5+4 x^4+10 x^3+2 x^2+19 x$
- $y^2=2 x^6+22 x^5+6 x^4+5 x^3+16 x^2+4 x+1$
- $y^2=2 x^6+12 x^5+3 x^4+22 x^3+2 x^2+12 x+22$
- $y^2=10 x^6+14 x^5+15 x^4+18 x^3+10 x^2+14 x+18$
- $y^2=15 x^6+6 x^5+10 x^4+16 x^3+5 x^2+13 x$
- $y^2=6 x^6+7 x^5+4 x^4+11 x^3+2 x^2+19 x$
- $y^2=13 x^6+18 x^5+7 x^4+x^3+18 x^2+20 x+16$
- $y^2=19 x^6+21 x^5+12 x^4+5 x^3+21 x^2+8 x+11$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-17})\). |
The base change of $A$ to $\F_{23^{2}}$ is 1.529.w 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-102}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.a_aw | $4$ | (not in LMFDB) |