# Stored data for abelian variety isogeny class 2.23.a_w, downloaded from the LMFDB on 11 September 2025. {"abvar_count": 552, "abvar_counts": [552, 304704, 148011624, 78633133056, 41426518985832, 21907440839117376, 11592836326868139048, 6132646471207971078144, 3244150909891736240694696, 1716156475283499157816732224], "abvar_counts_str": "552 304704 148011624 78633133056 41426518985832 21907440839117376 11592836326868139048 6132646471207971078144 3244150909891736240694696 1716156475283499157816732224 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.32936632817308, 0.67063367182692], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 24, "curve_counts": [24, 574, 12168, 280990, 6436344, 147987358, 3404825448, 78311445694, 1801152661464, 41426526758014], "curve_counts_str": "24 574 12168 280990 6436344 147987358 3404825448 78311445694 1801152661464 41426526758014 ", "curves": ["y^2=17*x^6+4*x^5+22*x^4+21*x^3+22*x^2+4*x+11", "y^2=16*x^6+20*x^5+18*x^4+13*x^3+18*x^2+20*x+9", "y^2=11*x^6+x^5+14*x^4+17*x^3+21*x^2+17*x+18", "y^2=9*x^6+5*x^5+x^4+16*x^3+13*x^2+16*x+21", "y^2=6*x^6+13*x^3+14*x^2+7*x+3", "y^2=7*x^6+19*x^3+x^2+12*x+15", "y^2=7*x^6+12*x^5+11*x^4+13*x^3+11*x^2+20*x+5", "y^2=12*x^6+14*x^5+9*x^4+19*x^3+9*x^2+8*x+2", "y^2=16*x^6+20*x^5+11*x^4+9*x^3+8*x^2+10*x+14", "y^2=11*x^6+8*x^5+9*x^4+22*x^3+17*x^2+4*x+1", "y^2=8*x^6+11*x^5+2*x^4+20*x^3+10*x^2+21*x+4", "y^2=17*x^6+9*x^5+10*x^4+8*x^3+4*x^2+13*x+20", "y^2=5*x^6+3*x^5+4*x^4+10*x^3+2*x^2+19*x", "y^2=2*x^6+22*x^5+6*x^4+5*x^3+16*x^2+4*x+1", "y^2=2*x^6+12*x^5+3*x^4+22*x^3+2*x^2+12*x+22", "y^2=10*x^6+14*x^5+15*x^4+18*x^3+10*x^2+14*x+18", "y^2=15*x^6+6*x^5+10*x^4+16*x^3+5*x^2+13*x", "y^2=6*x^6+7*x^5+4*x^4+11*x^3+2*x^2+19*x", "y^2=13*x^6+18*x^5+7*x^4+x^3+18*x^2+20*x+16", "y^2=19*x^6+21*x^5+12*x^4+5*x^3+21*x^2+8*x+11", "y^2=21*x^6+21*x^5+5*x^4+5*x^3+12*x^2+15*x+22", "y^2=13*x^6+13*x^5+2*x^4+2*x^3+14*x^2+6*x+18", "y^2=13*x^6+14*x^5+12*x^4+14*x^3+13*x^2+16*x+8", "y^2=19*x^6+x^5+14*x^4+x^3+19*x^2+11*x+17", "y^2=22*x^6+2*x^5+6*x^4+16*x^3+12*x^2+x+14", "y^2=6*x^6+18*x^5+3*x^3+7*x^2+7*x+15", "y^2=7*x^6+21*x^5+15*x^3+12*x^2+12*x+6", "y^2=5*x^6+3*x^5+15*x^4+15*x^3+16*x^2+2*x+20", "y^2=20*x^5+17*x^4+5*x^3+3*x^2+13*x+2", "y^2=16*x^6+15*x^5+4*x^3+14*x^2+22*x+20", "y^2=11*x^6+6*x^5+20*x^3+x^2+18*x+8", "y^2=15*x^6+21*x^5+2*x^4+9*x^3+x^2+7*x+15", "y^2=12*x^6+19*x^5+8*x^4+17*x^3+x^2+2*x+15", "y^2=14*x^6+3*x^5+17*x^4+16*x^3+5*x^2+10*x+6", "y^2=18*x^6+22*x^5+4*x^4+7*x^3+2*x^2+7*x+15", "y^2=21*x^6+18*x^5+20*x^4+12*x^3+10*x^2+12*x+6", "y^2=13*x^6+3*x^5+x^4+19*x^3+5*x^2+16*x+1", "y^2=19*x^6+15*x^5+5*x^4+3*x^3+2*x^2+11*x+5", "y^2=19*x^6+16*x^5+14*x^4+17*x^3+14*x^2+16*x+21", "y^2=8*x^6+5*x^5+8*x^4+12*x^3+12*x^2+18*x+15", "y^2=8*x^6+x^5+14*x^4+10*x^3+3*x^2+6*x+6", "y^2=17*x^6+5*x^5+x^4+4*x^3+15*x^2+7*x+7", "y^2=8*x^6+21*x^5+6*x^3+10*x^2+16*x+5", "y^2=17*x^6+13*x^5+7*x^3+4*x^2+11*x+2", "y^2=9*x^6+8*x^5+3*x^4+4*x^3+11*x^2+8*x+13", "y^2=22*x^6+17*x^5+15*x^4+20*x^3+9*x^2+17*x+19", "y^2=5*x^6+3*x^5+7*x^4+13*x^3+x^2+12*x+18", "y^2=2*x^6+15*x^5+12*x^4+19*x^3+5*x^2+14*x+21", "y^2=2*x^6+12*x^5+20*x^4+10*x^3+9*x^2+22*x+7", "y^2=10*x^6+14*x^5+8*x^4+4*x^3+22*x^2+18*x+12"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.408.1"], "geometric_splitting_field": "2.0.408.1", "geometric_splitting_polynomials": [[102, 0, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 50, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 50, "label": "2.23.a_w", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 4, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.665856.4"], "p": 23, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, 22, 0, 529], "poly_str": "1 0 22 0 529 ", "primitive_models": [], "q": 23, "real_poly": [1, 0, -24], "simple_distinct": ["2.23.a_w"], "simple_factors": ["2.23.a_wA"], "simple_multiplicities": [1], "singular_primes": ["2,53*F+58*V+3"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.665856.4", "splitting_polynomials": [[529, 0, 22, 0, 1]], "twist_count": 2, "twists": [["2.23.a_aw", "2.279841.bse_bypik", 4]], "weak_equivalence_count": 5, "zfv_index": 8, "zfv_index_factorization": [[2, 3]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 4624, "zfv_singular_count": 2, "zfv_singular_primes": ["2,53*F+58*V+3"]}