| L(s) = 1 | + 2-s − 2·3-s + 4-s − 2·6-s + 8-s + 9-s − 2·12-s + 16-s + 18-s − 8·19-s − 2·24-s − 10·25-s + 4·27-s + 32-s + 36-s − 8·38-s + 16·43-s − 2·48-s + 2·49-s − 10·50-s − 12·53-s + 4·54-s + 16·57-s + 64-s + 16·67-s + 72-s + 4·73-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.353·8-s + 1/3·9-s − 0.577·12-s + 1/4·16-s + 0.235·18-s − 1.83·19-s − 0.408·24-s − 2·25-s + 0.769·27-s + 0.176·32-s + 1/6·36-s − 1.29·38-s + 2.43·43-s − 0.288·48-s + 2/7·49-s − 1.41·50-s − 1.64·53-s + 0.544·54-s + 2.11·57-s + 1/8·64-s + 1.95·67-s + 0.117·72-s + 0.468·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.375183600\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.375183600\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.714241774370998291971873352051, −8.219888797179871881100664672892, −7.71319623971707540470742927921, −7.29484938101166108994999958784, −6.65330731261113455462227374582, −6.15777205658123834208045946258, −5.99911855171913780844071238816, −5.55324695398511660179242639164, −4.78136048868217964603743789674, −4.53177870298203396965614639892, −3.90229547122613769308947697962, −3.37176613840163753335045610201, −2.35027024394452387135343152508, −1.96477727170631410018279771361, −0.62289611347536456250264873990,
0.62289611347536456250264873990, 1.96477727170631410018279771361, 2.35027024394452387135343152508, 3.37176613840163753335045610201, 3.90229547122613769308947697962, 4.53177870298203396965614639892, 4.78136048868217964603743789674, 5.55324695398511660179242639164, 5.99911855171913780844071238816, 6.15777205658123834208045946258, 6.65330731261113455462227374582, 7.29484938101166108994999958784, 7.71319623971707540470742927921, 8.219888797179871881100664672892, 8.714241774370998291971873352051