| L(s) = 1 | + 4·5-s + 4·7-s + 4·17-s + 2·25-s + 16·35-s + 4·37-s + 4·41-s − 16·47-s + 9·49-s + 16·67-s − 8·79-s − 16·83-s + 16·85-s + 4·89-s + 4·101-s − 12·109-s + 16·119-s − 2·121-s − 28·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
| L(s) = 1 | + 1.78·5-s + 1.51·7-s + 0.970·17-s + 2/5·25-s + 2.70·35-s + 0.657·37-s + 0.624·41-s − 2.33·47-s + 9/7·49-s + 1.95·67-s − 0.900·79-s − 1.75·83-s + 1.73·85-s + 0.423·89-s + 0.398·101-s − 1.14·109-s + 1.46·119-s − 0.181·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.117802608\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.117802608\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.120289580421790604239583449857, −8.332308583782182682586427712127, −8.030070305076211776093139061171, −7.71845213837477328679800995039, −6.97040408208445726386901898790, −6.46601905556324814975732603387, −5.93741703340916592394160606431, −5.44405470681185031904321393903, −5.24876669811712429966130256363, −4.56570718188292946050568175819, −3.97997157010983292617980611011, −3.10437440203547891401062886212, −2.35019811508946280449786011982, −1.78448511676758006638625015945, −1.24796043263408953786134995645,
1.24796043263408953786134995645, 1.78448511676758006638625015945, 2.35019811508946280449786011982, 3.10437440203547891401062886212, 3.97997157010983292617980611011, 4.56570718188292946050568175819, 5.24876669811712429966130256363, 5.44405470681185031904321393903, 5.93741703340916592394160606431, 6.46601905556324814975732603387, 6.97040408208445726386901898790, 7.71845213837477328679800995039, 8.030070305076211776093139061171, 8.332308583782182682586427712127, 9.120289580421790604239583449857