Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 41 x^{2} )( 1 + 2 x + 41 x^{2} )$ |
| $1 - 4 x + 70 x^{2} - 164 x^{3} + 1681 x^{4}$ | |
| Frobenius angles: | $\pm0.344786929280$, $\pm0.549915982954$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $196$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1584$ | $3041280$ | $4769691696$ | $7980756664320$ | $13422807162675504$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1806$ | $69206$ | $2824286$ | $115857478$ | $4750050798$ | $194753251318$ | $7984927570366$ | $327382004428646$ | $13422659348542926$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 196 curves (of which all are hyperelliptic):
- $y^2=26 x^6+31 x^5+11 x^4+21 x^3+13 x^2+25 x+35$
- $y^2=38 x^6+21 x^5+38 x^4+35 x^3+7 x^2+35 x+24$
- $y^2=19 x^6+23 x^5+36 x^4+36 x^3+17 x^2+22 x+25$
- $y^2=13 x^6+21 x^5+8 x^4+5 x^3+39 x^2+9 x+3$
- $y^2=6 x^6+28 x^5+15 x^4+7 x^3+13 x^2+16 x+34$
- $y^2=x^5+33 x^4+39 x^3+40 x^2+30 x+38$
- $y^2=9 x^6+39 x^5+6 x^4+10 x^3+6 x^2+39 x+9$
- $y^2=19 x^6+38 x^5+27 x^4+28 x^3+11 x^2+14 x+34$
- $y^2=20 x^6+37 x^4+20 x^3+10 x^2+36$
- $y^2=35 x^6+25 x^5+38 x^4+26 x^3+8 x^2+39 x+14$
- $y^2=34 x^6+33 x^5+2 x^4+34 x^3+16 x^2+21 x+24$
- $y^2=35 x^6+39 x^5+8 x^4+x^3+10 x^2+2 x+28$
- $y^2=35 x^6+35 x^5+39 x^4+10 x^3+39 x^2+35 x+35$
- $y^2=37 x^6+35 x^5+20 x^4+36 x^3+20 x^2+35 x+37$
- $y^2=23 x^6+40 x^4+8 x^3+22 x^2+35 x+17$
- $y^2=5 x^6+17 x^5+28 x^4+18 x^3+18 x^2+26 x+23$
- $y^2=25 x^6+34 x^5+24 x^4+18 x^3+38 x^2+30 x+9$
- $y^2=34 x^6+3 x^5+40 x^4+33 x^3+23 x^2+2 x+35$
- $y^2=17 x^6+30 x^5+x^4+23 x^3+9 x^2+38$
- $y^2=22 x^6+23 x^5+35 x^4+11 x^3+27 x^2+37 x+8$
- and 176 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The isogeny class factors as 1.41.ag $\times$ 1.41.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.ai_dq | $2$ | (not in LMFDB) |
| 2.41.e_cs | $2$ | (not in LMFDB) |
| 2.41.i_dq | $2$ | (not in LMFDB) |