Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 34 x^{2} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.157621024206$, $\pm0.842378975794$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{6}, \sqrt{-7})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $34$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $928$ | $861184$ | $887562400$ | $854308306944$ | $819628273402528$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $894$ | $29792$ | $925054$ | $28629152$ | $887621118$ | $27512614112$ | $852893558014$ | $26439622160672$ | $819628259824254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=23 x^6+28 x^5+30 x^4+26 x^3+28 x^2+4 x+1$
- $y^2=12 x^6+4 x^5+17 x^4+7 x^3+5 x^2+10 x+7$
- $y^2=26 x^6+25 x^5+18 x^4+7 x^3+10 x^2+18 x+12$
- $y^2=21 x^6+25 x^5+23 x^4+9 x^3+26 x^2+17 x+3$
- $y^2=25 x^6+10 x^5+5 x^4+2 x^3+10 x^2+11 x+1$
- $y^2=13 x^6+27 x^4+15 x^3+x^2+27 x+1$
- $y^2=8 x^6+19 x^4+14 x^3+3 x^2+19 x+3$
- $y^2=7 x^6+17 x^5+9 x^4+16 x^3+28 x^2+11 x+24$
- $y^2=23 x^6+22 x^5+8 x^4+27 x^3+20 x^2+10$
- $y^2=24 x^6+27 x^5+30 x^4+x^3+x^2+6 x$
- $y^2=14 x^6+16 x^5+10 x^4+24 x^3+29 x^2+18 x+17$
- $y^2=23 x^6+6 x^5+18 x^4+12 x^3+12 x^2+4 x+7$
- $y^2=18 x^6+23 x^5+15 x^4+28 x^2+22 x+13$
- $y^2=3 x^6+27 x^5+28 x^4+26 x^3+17 x+1$
- $y^2=9 x^6+19 x^5+22 x^4+16 x^3+20 x+3$
- $y^2=x^6+22 x^5+x^4+27 x^3+6 x^2+5 x+6$
- $y^2=30 x^6+10 x^5+5 x^4+26 x^3+15 x^2+10 x+19$
- $y^2=28 x^6+30 x^5+15 x^4+16 x^3+14 x^2+30 x+26$
- $y^2=7 x^6+8 x^5+4 x^4+20 x^3+23 x^2+16 x+15$
- $y^2=30 x^6+11 x^5+18 x^4+8 x^3+2 x^2+19 x$
- and 14 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-7})\). |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.abi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.a_bi | $4$ | (not in LMFDB) |