Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 67 x^{2} )( 1 - 4 x + 67 x^{2} )$ |
$1 - 16 x + 182 x^{2} - 1072 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.238111713333$, $\pm0.421429069538$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $270$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3584$ | $20643840$ | $90887777792$ | $406146908160000$ | $1822826116358127104$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $4598$ | $302188$ | $20155054$ | $1350116452$ | $90458569766$ | $6060714005020$ | $406067654879326$ | $27206533836672916$ | $1822837801455436118$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 270 curves (of which all are hyperelliptic):
- $y^2=27 x^6+50 x^5+38 x^4+x^3+59 x^2+22 x+55$
- $y^2=51 x^6+14 x^5+11 x^4+12 x^3+11 x^2+14 x+51$
- $y^2=25 x^6+61 x^5+63 x^4+26 x^3+63 x^2+61 x+25$
- $y^2=64 x^6+62 x^5+16 x^4+28 x^3+48 x+48$
- $y^2=11 x^6+49 x^5+7 x^4+50 x^3+56 x^2+11 x+49$
- $y^2=43 x^6+48 x^5+9 x^4+36 x^3+47 x^2+41 x+53$
- $y^2=25 x^6+58 x^5+29 x^4+44 x^3+39 x^2+21 x+51$
- $y^2=17 x^6+46 x^5+62 x^4+65 x^3+60 x^2+58 x+37$
- $y^2=13 x^6+52 x^5+57 x^4+52 x^3+21 x^2+9 x+47$
- $y^2=47 x^6+45 x^5+20 x^4+51 x^3+13 x^2+50 x+60$
- $y^2=11 x^6+37 x^5+58 x^4+46 x^3+31 x^2+66 x+25$
- $y^2=12 x^6+3 x^5+35 x^4+20 x^3+64 x^2+59 x+65$
- $y^2=20 x^6+31 x^5+48 x^4+34 x^3+17 x^2+35 x+34$
- $y^2=32 x^6+30 x^5+28 x^4+19 x^3+28 x^2+30 x+32$
- $y^2=62 x^6+60 x^5+37 x^4+19 x^3+16 x^2+38 x+40$
- $y^2=32 x^6+14 x^5+9 x^4+36 x^3+55 x^2+40 x+49$
- $y^2=50 x^5+41 x^4+41 x^3+51 x^2+34 x$
- $y^2=56 x^6+23 x^5+45 x^4+5 x^3+18 x^2+63 x+10$
- $y^2=34 x^6+8 x^5+30 x^4+36 x^3+30 x^2+8 x+34$
- $y^2=66 x^6+36 x^5+14 x^4+18 x^3+15 x^2+55 x+53$
- and 250 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.am $\times$ 1.67.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ai_di | $2$ | (not in LMFDB) |
2.67.i_di | $2$ | (not in LMFDB) |
2.67.q_ha | $2$ | (not in LMFDB) |