Properties

Label 2.67.aq_ha
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 67 x^{2} )( 1 - 4 x + 67 x^{2} )$
  $1 - 16 x + 182 x^{2} - 1072 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.238111713333$, $\pm0.421429069538$
Angle rank:  $2$ (numerical)
Jacobians:  $270$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3584$ $20643840$ $90887777792$ $406146908160000$ $1822826116358127104$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $52$ $4598$ $302188$ $20155054$ $1350116452$ $90458569766$ $6060714005020$ $406067654879326$ $27206533836672916$ $1822837801455436118$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 270 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.am $\times$ 1.67.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.ai_di$2$(not in LMFDB)
2.67.i_di$2$(not in LMFDB)
2.67.q_ha$2$(not in LMFDB)