| L(s) = 1 | + 2·3-s + 3·9-s + 2·11-s − 4·17-s − 10·25-s + 4·27-s + 4·33-s − 12·41-s + 24·43-s − 10·49-s − 8·51-s − 8·67-s + 4·73-s − 20·75-s + 5·81-s + 8·83-s − 28·89-s − 4·97-s + 6·99-s − 8·107-s − 28·113-s + 3·121-s − 24·123-s + 127-s + 48·129-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 9-s + 0.603·11-s − 0.970·17-s − 2·25-s + 0.769·27-s + 0.696·33-s − 1.87·41-s + 3.65·43-s − 1.42·49-s − 1.12·51-s − 0.977·67-s + 0.468·73-s − 2.30·75-s + 5/9·81-s + 0.878·83-s − 2.96·89-s − 0.406·97-s + 0.603·99-s − 0.773·107-s − 2.63·113-s + 3/11·121-s − 2.16·123-s + 0.0887·127-s + 4.22·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2230272 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2230272 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.59728616940349967649485030278, −7.18560206492637594737079166625, −6.56294199925233738325138182894, −6.49152714179339359324472370282, −5.65888596404534691311056509338, −5.54640234169864262168007165565, −4.52009791178801828235754419921, −4.48131796152143406195105869579, −3.72939112912468208779060606206, −3.67603058766281829826755122415, −2.76370782595700519478080690028, −2.45735474547779135132608451071, −1.80476785917260666627304613228, −1.28476892045959906041277637532, 0,
1.28476892045959906041277637532, 1.80476785917260666627304613228, 2.45735474547779135132608451071, 2.76370782595700519478080690028, 3.67603058766281829826755122415, 3.72939112912468208779060606206, 4.48131796152143406195105869579, 4.52009791178801828235754419921, 5.54640234169864262168007165565, 5.65888596404534691311056509338, 6.49152714179339359324472370282, 6.56294199925233738325138182894, 7.18560206492637594737079166625, 7.59728616940349967649485030278