Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 71 x^{2} )( 1 + 10 x + 71 x^{2} )$ |
$1 + 42 x^{2} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.297788873486$, $\pm0.702211126514$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $256$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5084$ | $25847056$ | $128099722844$ | $646176400000000$ | $3255243554609637404$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5126$ | $357912$ | $25428318$ | $1804229352$ | $128099161766$ | $9095120158392$ | $645753494514238$ | $45848500718449032$ | $3255243558209393606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 256 curves (of which all are hyperelliptic):
- $y^2=44 x^6+66 x^4+21 x^3+12 x^2+12$
- $y^2=32 x^6+2 x^5+45 x^4+68 x^3+21 x^2+35 x+24$
- $y^2=11 x^6+14 x^5+31 x^4+50 x^3+5 x^2+32 x+26$
- $y^2=62 x^6+29 x^5+34 x^4+20 x^3+18 x^2+58 x+3$
- $y^2=35 x^6+65 x^5+38 x^4+26 x^3+51 x^2+19 x+63$
- $y^2=32 x^6+29 x^5+53 x^4+40 x^3+2 x^2+62 x+15$
- $y^2=13 x^6+12 x^5+13 x^4+19 x^3+4 x^2+28 x+32$
- $y^2=20 x^6+13 x^5+20 x^4+62 x^3+28 x^2+54 x+11$
- $y^2=13 x^6+8 x^5+25 x^4+40 x^3+69 x^2+16 x+68$
- $y^2=20 x^6+56 x^5+33 x^4+67 x^3+57 x^2+41 x+50$
- $y^2=28 x^6+39 x^5+48 x^4+32 x^3+53 x^2+39 x+31$
- $y^2=54 x^6+60 x^5+52 x^4+11 x^3+16 x^2+60 x+4$
- $y^2=64 x^6+11 x^5+31 x^4+24 x^3+22 x^2+28 x+24$
- $y^2=22 x^6+6 x^5+4 x^4+26 x^3+12 x^2+54 x+26$
- $y^2=51 x^6+12 x^5+57 x^4+41 x^3+22 x^2+3 x+33$
- $y^2=2 x^6+13 x^5+44 x^4+3 x^3+12 x^2+21 x+18$
- $y^2=30 x^5+8 x^4+25 x^3+11 x^2+19 x$
- $y^2=40 x^6+27 x^5+51 x^4+44 x^3+51 x^2+67 x+24$
- $y^2=67 x^6+47 x^5+2 x^4+24 x^3+2 x^2+43 x+26$
- $y^2=37 x^6+7 x^5+2 x^4+41 x^3+43 x^2+14 x+30$
- and 236 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.ak $\times$ 1.71.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.bq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-46}) \)$)$ |
Base change
This is a primitive isogeny class.